English

यदि Sn किसी AP के प्रथम n पदों का योग व्यक्त करता है, तो सिद्ध कीजिए कि S12 = 3(S8 – S4) है। - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि Sn किसी AP के प्रथम n पदों का योग व्यक्त करता है, तो सिद्ध कीजिए कि S12 = 3(S8 – S4) है। 

Sum

Solution

किसी AP के n पदों का योग,

Sn = `n/2[2a + (n - 1)d]`   ...(i)

∴ S8 = `8/2[2a + (8 - 1)d]`

= 4(2a + 7d)

= 8a + 28d

और S4 = `4/2[2a + (4 - 1)d]`

= 2(2a + 3d)

= 4a + 6d

अब, S8 – S4

= 8a + 28d – 4a – 6d

= 4a + 22d   ...(ii)

और S12 = `12/2[2a + (12 - 1)d]`

= 6(2a + 11d)

= 3(4a + 22d)

= 3(S8 – S4)  ....[समीकरण (ii) से]

∴ S12 = 3(S8 – S4)

अतः सिद्ध हुआ।

shaalaa.com
A.P. के प्रथम N पदों का योग
  Is there an error in this question or solution?
Chapter 5: समांतर श्रेढ़ी - प्रश्नावली 5.3 [Page 56]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 5 समांतर श्रेढ़ी
प्रश्नावली 5.3 | Q 26. | Page 56

RELATED QUESTIONS

एक A.P. में, a3 = 15 और S10 = 125 दिया है। d और a10 ज्ञात कीजिए।


636 योग प्राप्त करने के लिए, AP.: 9, 17, 25, … के कितने पद लेने चाहिए?


किसी स्कूल के विद्यार्थियों के उनके समग्र शैक्षिक प्रदर्शन के लिए 7 नकद पुरस्कार देने के लिए ₹ 700 की राशि रखी गयी है। यदि प्रत्येक पुरस्कार अपने से ठीक पहले पुरस्कार से ₹ 20 कम है, तो प्रत्येक पुरस्कार का मान ज्ञात कीजिए।


योग ज्ञात कीजिए :

`4 - 1/"n" + 4 - 2/"n" + 4 - 3/"n" + ... + "n पदों तक"`


ऐसी प्रथम सात संख्याओं का योग ज्ञात कीजिए, जो 2 का गुणज हैं और 9 का भी गुणज हैं।

[संकेत : 2 और 9 का LCM ज्ञात कीजिए।]


प्रथम पद 8 और सार्व अंतर 20 वाली एक AP के प्रथम n पदों का योग एक अन्य AP के प्रथम 2n पदों के योग के बराबर है, जिसका प्रथम पद –30 और सार्व अंतर 8 है। n ज्ञात कीजिए।


कनिका को उसका जेब खर्च 1 जनवरी 2008 को दिया गया। वह इसमें से अपने पिग्गी बैंक में पहले दिन 1 रु डालती है, दूसरे दिन 2 रु डालती है, तीसरे दिन 3 रु डालती है तथा ऐसा ही महीने के अंत तक करती रहती है। उसने अपने जेब खर्च में से 204 रु खर्च भी किए और पाया कि महीने के अंत में उसके पास अभी भी 100 रु शेष हैं। उस महीने उसको कितना जेब खर्च मिला था ?


100 और 200 के बीच के उन पूर्णांकों का योग ज्ञात कीजिए, जो 9 से विभाज्य नहीं हैं।

[संकेत (ii) : ये संख्याएँ होंगी : कुल संख्याएँ– 9 से विभाज्य संख्याएँ]


दर्शाइए कि उस AP का योग, जिसका प्रथम पद a, द्वितीय पद b और अंतिम पद c हो, `((a + c)(b + c - 2a))/(2(b - a))` के बराबर है।


समीकरण – 4 + (−1) + 2 + ... + x = 437 को हल कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×