Advertisements
Advertisements
Question
कनिका को उसका जेब खर्च 1 जनवरी 2008 को दिया गया। वह इसमें से अपने पिग्गी बैंक में पहले दिन 1 रु डालती है, दूसरे दिन 2 रु डालती है, तीसरे दिन 3 रु डालती है तथा ऐसा ही महीने के अंत तक करती रहती है। उसने अपने जेब खर्च में से 204 रु खर्च भी किए और पाया कि महीने के अंत में उसके पास अभी भी 100 रु शेष हैं। उस महीने उसको कितना जेब खर्च मिला था ?
Solution
माना उसकी जेब खर्च ₹ x है।
अब, वह पहले दिन 11 रुपये, दूसरे दिन ₹ 2 रुपये, तीसरे दिन ₹ 3 रुपये और इसी तरह महीने के अंत तक, इन पैसों से अपने गुल्लक में डालती है।
अर्थात, 1 + 2 + 3 + 4 + ... + 31
जो एक AP बनाते हैं जिसमें पद 31 और पहला पद पद = 1 है,
सामान्य अंतर (d) = 2 – 1 = 1
∴ पहले 31 पदों का योग S31 है।
n पदों का योग,
Sn = `n/2[2a + (n - 1)d]`
∴ S31 = `31/2[2 xx 1 + (31 - 1) xx 1]`
= `31/2(2 + 30)`
= `(31 xx 32)/2`
= 31 × 16
= 496
तो, कनिका इस पैसे से महीने के अंत तक ₹ 496 लेती है।
साथ ही, उसने अपनी पॉकेट मनी में से ₹ 204 खर्च किए और पाया कि महीने के अंत में उसके पास अभी भी ₹ 100 हैं।
अब शर्त के अनुसार,
(x – 496) – 204 = 100
⇒ x – 700 = 100
∴ x = ₹ 800
अत:, ₹ 800 महीने के लिए उसकी जेबखर्ची थी।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:
-37, -33, -29,....,12 पदों तक
एक A.P. में, a12 = 37 और d = 3 दिया है। a और S12 ज्ञात कीजिए।
एक A.P. में, a = 2, d = 8 और Sn = 90 दिया है। n और an ज्ञात कीजिए।
एक A.P. में, a = 8, an = 62 और Sn = 210 दिया है। n और d ज्ञात कीजिए।
एक A.P. में, an = 4, d = 2 और Sn = -14 दिया है। n और a ज्ञात कीजिए।
किसी स्कूल के विद्यार्थियों के उनके समग्र शैक्षिक प्रदर्शन के लिए 7 नकद पुरस्कार देने के लिए ₹ 700 की राशि रखी गयी है। यदि प्रत्येक पुरस्कार अपने से ठीक पहले पुरस्कार से ₹ 20 कम है, तो प्रत्येक पुरस्कार का मान ज्ञात कीजिए।
AP: 10, 6, 2,... के प्रथम 16 पदों का योग ______ है।
AP: `- 4/3, -1, -2/3,..., 4 1/3` के दोनों मध्य पदों का योग ज्ञात कीजिए।
यदि an = 3 – 4n हो, तो दर्शाइए कि a1, a2, a3,... एक AP बनाते हैं। S20 भी ज्ञात कीजिए।
किसी AP में यदि Sn = 3n2 + 5n और ak = 164 है, तो k का मान ज्ञात कीजिए।