Advertisements
Chapters
![NCERT Exemplar solutions for Mathematics [Hindi] Class 10 chapter 5 - समांतर श्रेढ़ी NCERT Exemplar solutions for Mathematics [Hindi] Class 10 chapter 5 - समांतर श्रेढ़ी - Shaalaa.com](/images/mathematics-hindi-class-10_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
Advertisements
Solutions for Chapter 5: समांतर श्रेढ़ी
Below listed, you can find solutions for Chapter 5 of CBSE NCERT Exemplar for Mathematics [Hindi] Class 10.
NCERT Exemplar solutions for Mathematics [Hindi] Class 10 5 समांतर श्रेढ़ी प्रश्नावली 5.1 [Pages 47 - 49]
दिए हुए चार विकल्पों में से सही उत्तर चुनिए :
किसी AP में, यदि d = – 4, n = 7 और an = 4 है, तो a का मान ______ है।
6
7
20
28
किसी AP में, यदि a = 3.5, d = 0 और n = 101 है, तो an बराबर ______ है।
0
3.5
103.5
104.5
संख्याओं – 10, – 6, – 2, 2,... की सूची ______।
d = – 16 वाली एक AP है
d = 4 वाली एक AP है
d = – 4 वाली एक AP है
एक AP नहीं है
AP : `-5, (-5)/2, 0, 5/2, ...` का 11 वाँ पद ______ है।
–20
20
–30
30
उस AP, जिसका प्रथम पद –2 और सार्व अंतर –2 है, के प्रथम चार पद ______ हैं।
– 2, 0, 2, 4
– 2, 4, – 8, 16
– 2, – 4, – 6, – 8
– 2, – 4, – 8, –16
उस AP, जिसके प्रथम दो पद –3 और 4 हैं, का 21 वाँ पद ______ है।
17
137
143
–143
यदि किसी AP का दूसरा पद 13 और 5 वाँ पद 25 है, तो उसका 7 वाँ पद क्या है?
30
33
37
38
AP: 21, 42, 63, 84,... का कौन-सा पद 210 है?
9 वाँ
10 वाँ
11 वाँ
12 वाँ
यदि किसी AP का सार्व अंतर 5 है, तो a18 – a13 क्या है?
5
20
25
30
उस AP का सार्व अंतर क्या है, जिसमें a18 – a14 32 है?
8
– 8
– 4
4
दो समांतर श्रेढ़ियों का एक ही सार्व अंतर है। इनमें से एक का प्रथम पद –1 और दूसरी का प्रथम पद – 8 है। तब, इनके चौथे पदों के बीच का अंतर ______ है।
–1
– 8
7
–9
यदि किसी AP के 7 वें पद का 7 गुना उसके 11 वें पद के 11 गुने के बराबर हो, तो उसका 18 वाँ पद होगा ______ है।
7
11
18
0
AP: –11, –8, –5, ..., 49 के अंत से चौथा पद ______ है।
37
40
43
58
प्रथम 100 प्राकृत संख्याओं के योग को ज्ञात करने से संबद्ध प्रसिद्ध गणितज्ञ ______ है।
पाइथागोरस
न्यूटन
गॉस
यूक्लिड
यदि किसी AP का प्रथम पद –5 और सार्व अंतर 2 है, तो उसके प्रथम 6 पदों का योग ______ है।
0
5
6
15
AP: 10, 6, 2,... के प्रथम 16 पदों का योग ______ है।
–320
320
–352
–400
किसी AP में, यदि a = 1, an = 20 और Sn = 399 हों, तो n बराबर ______ है।
19
21
38
42
3 के प्रथम पाँच गुणजों का योग ______ है।
45
55
65
75
NCERT Exemplar solutions for Mathematics [Hindi] Class 10 5 समांतर श्रेढ़ी प्रश्नावली 5.2 [Pages 51 - 52]
निम्नलिखित में कौन एक AP बनाते हैं? अपने उत्तर का औचित्य दीजिए।
–1, –1, –1, –1,...
निम्नलिखित में कौन एक AP बनाते हैं? अपने उत्तर का औचित्य दीजिए।
0, 2, 0, 2,...
निम्नलिखित में कौन एक AP बनाते हैं? अपने उत्तर का औचित्य दीजिए।
1, 1, 2, 2, 3, 3,...
निम्नलिखित में कौन एक AP बनाते हैं? अपने उत्तर का औचित्य दीजिए।
11, 22, 33,...
निम्नलिखित में कौन एक AP बनाते हैं? अपने उत्तर का औचित्य दीजिए।
निम्नलिखित में कौन एक AP बनाते हैं? अपने उत्तर का औचित्य दीजिए।
2, 22, 23, 24,...
निम्नलिखित में कौन एक AP बनाते हैं? अपने उत्तर का औचित्य दीजिए।
औचित्य के साथ बताइए कि क्या यह कहना सत्य है कि `-1, - 3/2, -2, 5/2,...` से एक AP बनती है, क्योंकि a2 – a1 = a3 – a2 है।
सत्य
असत्य
AP: −3, –7, −11, ... के लिए क्या हम a30 और a20 को वास्तव में बिना ज्ञात किए सीधे a30 – a20 ज्ञात कर सकते हैं? अपने उत्तर के लिए कारण दीजिए।
सत्य
असत्य
दो समांतर श्रेढ़ियों का एक ही सार्व अंतर है। एक समांतर श्रेढ़ी का प्रथम पद 2 है और दूसरी का प्रथम पद 7 है। उनके दसवें पदों का अंतर वही है जो उनके 21 वें पदों का अंतर है और यह वही है जो उनके किन्हीं दो संगत पदों का अंतर है। क्यों ?
क्या AP: 31, 28, 25, ... का 0 कोई पद है? अपने उत्तर का औचित्य दीजिए।
जब प्रथम किलोमीटर का टैक्सी का किराया 15 रु है और प्रत्येक अतिरिक्त किलोमीटर का किराया 8 रु है, तो प्रत्येक किलोमीटर के बाद टैक्सी के किराए से AP नहीं बनती है, क्योंकि प्रत्येक किलोमीटर के बाद कुल किराया (रु में) निम्नलिखित है :
15, 8, 8, 8,...
क्या यह कथन सत्य है? कारण दीजिए।
सत्य
असत्य
निम्नलिखित स्थितियों में से किन में, संबद्ध संख्याओं की सूची से एक AP बनती है? अपने उत्तरों के लिए कारण दीजिए।
किसी स्कूल द्वारा प्रत्येक विद्यार्थी से पूरे सत्र में प्रत्येक महीने में लिया गया शुल्क, जब कि मासिक शुल्क 400 रु है।
निम्नलिखित स्थितियों में से किन में, संबद्ध संख्याओं की सूची से एक AP बनती है? अपने उत्तरों के लिए कारण दीजिए।
किसी स्कूल द्वारा कक्षा I से XII तक से प्रत्येक मास में लिया गया शुल्क, जबकि कक्षा I का मासिक शुल्क 250 रु है तथा यह प्रत्येक अगली कक्षा के लिए 50 रु बढ़ता जाता है।
निम्नलिखित स्थितियों में से किन में, संबद्ध संख्याओं की सूची से एक AP बनती है? अपने उत्तरों के लिए कारण दीजिए।
वरुण के खाते में प्रत्येक वर्ष के अंत में जमा राशि, जब कि खाते में 1000 रु 10% वार्षिक साधारण ब्याज की दर से जमा किए गए है।
निम्नलिखित स्थितियों में से किन में, संबद्ध संख्याओं की सूची से एक AP बनती है? अपने उत्तरों के लिए कारण दीजिए।
किसी खाद्य पदार्थ में प्रत्येक सेकंड के बाद जीवाणुओं की संख्या, जब कि वे प्रत्येक सेकंड में दुगुने हो जाते हैं।
औचित्य देते हुए बताइए कि क्या यह कहना सत्य है कि निम्नलिखित किसी AP के n वें पद हैं:
2n – 3
सत्य
असत्य
औचित्य देते हुए बताइए कि क्या यह कहना सत्य है कि निम्नलिखित किसी AP के n वें पद हैं:
3n2 + 5
सत्य
असत्य
औचित्य देते हुए बताइए कि क्या यह कहना सत्य है कि निम्नलिखित किसी AP के n वें पद हैं:
1 + n + n2
सत्य
असत्य
NCERT Exemplar solutions for Mathematics [Hindi] Class 10 5 समांतर श्रेढ़ी प्रश्नावली 5.3 [Pages 53 - 56]
स्तंभ A में दी हुई प्रत्येक AP को स्तंभ B में दिए उपयुक्त सार्व अंतर से सुमेलित कीजिए:
स्तंभ A | स्तंभ B |
(A1) 2, –2, –6, –10,... | (B1) `2/3` |
(A2) a = –18, n = 10, an = 0 | (B2) –5 |
(A3) a = 0, a10 = 6 | (B3) 4 |
(A4) a2 = 13, a4 = 3 | (B4) –4 |
(B5) 2 | |
(B6) `1/2` | |
(B7) 5 |
सत्यापित कीजिए कि निम्नलिखित में से प्रत्येक एक AP है और फिर उसके अगले तीन पद लिखिए :
`0, 1/4, 1/2, 3/4, ...`
सत्यापित कीजिए कि निम्नलिखित में से प्रत्येक एक AP है और फिर उसके अगले तीन पद लिखिए :
`5, 14/3, 13/3, 4,...`
सत्यापित कीजिए कि निम्नलिखित में से प्रत्येक एक AP है और फिर उसके अगले तीन पद लिखिए :
`sqrt(3), 2sqrt(3), 3sqrt(3),...`
सत्यापित कीजिए कि निम्नलिखित में से प्रत्येक एक AP है और फिर उसके अगले तीन पद लिखिए :
a + b, (a + 1) + b, (a + 1) + (b + 1),...
सत्यापित कीजिए कि निम्नलिखित में से प्रत्येक एक AP है और फिर उसके अगले तीन पद लिखिए :
a, 2a + 1, 3a + 2, 4a + 3,...
प्रत्येक AP के प्रथम तीन पद लिखिए, जिनके a और d नीचे दिए हैं :
a = `1/2`, d = `-1/6`
प्रत्येक AP के प्रथम तीन पद लिखिए, जिनके a और d नीचे दिए हैं :
a = –5, d = –3
प्रत्येक AP के प्रथम तीन पद लिखिए, जिनके a और d नीचे दिए हैं :
a = `sqrt(2)`, d = `1/sqrt(2)`
a, b और c के ऐसे मान ज्ञात कीजिए कि संख्याएँ a, 7, b, 23, c एक AP में हों।
वह AP निर्धारित कीजिए जिसका पाँचवाँ पद 19 है तथा आठवें पद का तेरहवें पद से अंतर 20 है।
किसी AP के 26 वें, 11 वें और अंतिम पद क्रमश : 0, 3 और `-1/5` हैं। इसका सार्व अंतर और पदों की संख्या ज्ञात कीजिए।
किसी AP के 5 वें और 7 वें पदों का योग 52 है तथा 10 वाँ पद 46 है। वह AP ज्ञात कीजिए।
उस AP का 20 वाँ पद ज्ञात कीजिए जिसका 7 वाँ पद 11 वें पद से 24 कम है और प्रथम पद 12 है।
यदि किसी AP का 9 वाँ पद शून्य है, तो सिद्ध कीजिए कि उसका 29 वाँ पद उसके 19 वें पद का दुगुना होगा।
ज्ञात कीजिए कि 55 एक AP : 7, 10, 13,... का पद है या नहीं। यदि हाँ, तो ज्ञात कीजिए कि यह कौन-सा पद है।
k का मान ज्ञात कीजिए ताकि k2 + 4k + 8, 2k2 + 3k + 6, 3k2 + 4k + 4 किसी AP के तीन क्रमागत पद हों।
207 को तीन ऐसे भागों में विभक्त कीजिए कि ये भाग एक AP में हों तथा दो छोटे भागों का गुणनफल 4623 हो।
किसी त्रिभुज के कोण एक AP में हैं। सबसे बड़ा कोण सबसे छोटे कोण का दुगुना है। त्रिभुज के सभी कोण ज्ञात कीजिए।
यदि दो समांतर श्रेढ़ियों 9, 7, 5,... और 24, 21, 18,... के n वें पद एक ही हैं, तो n का मान ज्ञात कीजिए। साथ ही, वह पद भी ज्ञात कीजिए।
यदि किसी AP के तीसरे और 8 वें पदों का योग 7 है तथा 7 वें और 14 वें पदों का योग –3 है, तो उसका 10 वाँ पद ज्ञात कीजिए।
AP: –2, –4, –6,..., –100 का अंत से 12 वाँ पद ज्ञात कीजिए।
AP: 53, 48, 43,... में प्रथम ऋणात्मक पद कौन-सा होगा?
10 और 300 के बीच में स्थित ऐसी कितनी संख्याएँ हैं, जिनको 4 से भाग देने पर शेषफल 3 रहता है?
AP: `- 4/3, -1, -2/3,..., 4 1/3` के दोनों मध्य पदों का योग ज्ञात कीजिए।
किसी AP का प्रथम पद −5 और अंतिम पद 45 है। यदि इस AP के पदों का योग 120 हो, तो पदों की संख्या और सार्व अंतर ज्ञात कीजिए।
योग ज्ञात कीजिए :
1 + (–2) + (–5) + (–8) + ... + (–236)
योग ज्ञात कीजिए :
`4 - 1/"n" + 4 - 2/"n" + 4 - 3/"n" + ... + "n पदों तक"`
योग ज्ञात कीजिए :
`(a - b)/(a + b) + (3a - 2b)/(a + b) + (5a - 3b)/(a + b) + ...` 11 पदों तक
AP: –2, –7, –12,... का कौन-सा पद –77 है? पद –77 तक इस AP का योग ज्ञात कीजिए।
यदि an = 3 – 4n हो, तो दर्शाइए कि a1, a2, a3,... एक AP बनाते हैं। S20 भी ज्ञात कीजिए।
किसी AP में, यदि Sn = n(4n + 1) है, तो AP ज्ञात कीजिए।
किसी AP में यदि Sn = 3n2 + 5n और ak = 164 है, तो k का मान ज्ञात कीजिए।
यदि Sn किसी AP के प्रथम n पदों का योग व्यक्त करता है, तो सिद्ध कीजिए कि S12 = 3(S8 – S4) है।
उस AP के प्रथम 17 पदों का योग ज्ञात कीजिए, जिसके चौथे और 9 वें पद क्रमशः –15 और –30 हैं।
यदि किसी AP के प्रथम 6 पदों का योग 36 है तथा प्रथम 16 पदों का योग 256 है, तो उसके प्रथम 10 पदों का योग ज्ञात कीजिए।
उस AP के सभी 11 पदों का योग ज्ञात कीजिए, जिसका मध्य पद 30 है।
AP: 8, 10, 12,..., 126 के अंतिम 10 पदों का योग ज्ञात कीजिए।
ऐसी प्रथम सात संख्याओं का योग ज्ञात कीजिए, जो 2 का गुणज हैं और 9 का भी गुणज हैं।
[संकेत : 2 और 9 का LCM ज्ञात कीजिए।]
AP: −15, −13, −11,... का योग −55 बनाने के लिए इसके कितने पदों की आवश्यकता होगी? दो उत्तर प्राप्त होने का कारण स्पष्ट कीजिए।
प्रथम पद 8 और सार्व अंतर 20 वाली एक AP के प्रथम n पदों का योग एक अन्य AP के प्रथम 2n पदों के योग के बराबर है, जिसका प्रथम पद –30 और सार्व अंतर 8 है। n ज्ञात कीजिए।
कनिका को उसका जेब खर्च 1 जनवरी 2008 को दिया गया। वह इसमें से अपने पिग्गी बैंक में पहले दिन 1 रु डालती है, दूसरे दिन 2 रु डालती है, तीसरे दिन 3 रु डालती है तथा ऐसा ही महीने के अंत तक करती रहती है। उसने अपने जेब खर्च में से 204 रु खर्च भी किए और पाया कि महीने के अंत में उसके पास अभी भी 100 रु शेष हैं। उस महीने उसको कितना जेब खर्च मिला था ?
यासमीन पहले महीने में 32 रु की बचत करती है, दूसरे महीने में 36 रु की बचत करती है तथा तीसरे महीने में 40 रु की बचत करती है। यदि वह इसी प्रकार बचत करती रहे, तो कितने महीने में वह 2000 रु की बचत कर लेगी?
NCERT Exemplar solutions for Mathematics [Hindi] Class 10 5 समांतर श्रेढ़ी प्रश्नावली 5.4 [Pages 59 - 60]
किसी AP के प्रथम पाँच पदों के योग और उसी AP के प्रथम सात पदों के योग का योग 167 है। यदि इस AP के प्रथम दस पदों का योग 235 है, तो इसके प्रथम 20 पदों का योग ज्ञात कीजिए।
ज्ञात कीजिए :
1 और 500 के बीच के उन पूर्णांकों का योग जो 2 के भी गुणज हैं और 5 के भी गुणज हैं।
ज्ञात कीजिए :
1 से 500 तक के उन पूर्णांकों का योग जो 2 के भी गुणज हैं और 5 के भी गुणज हैं।
ज्ञात कीजिए :
1 से 500 तक के उन पूर्णांकों का योग जो 2 या 5 के गुणज हैं।
[संकेत (iii) : ये संख्याएँ होंगी : 2 के गुणज + 5 के गुणज – 2 और 5 दोनों के गुणज]
किसी AP का 8 वाँ पद उसके दूसरे पद का आधा है तथा 11 वाँ पद उसके चौथे पद के एक तिहाई से 1 अधिक है। 15 वाँ पद ज्ञात कीजिए।
किसी AP में 37 पद हैं। बीचो-बीच के तीन पदों का योग 225 है तथा अंतिम तीन पदों का योग 429 है। वह AP ज्ञात कीजिए।
100 और 200 के बीच के उन पूर्णांकों का योग ज्ञात कीजिए, जो
- 9 से विभाज्य हैं।
- 9 से विभाज्य नहीं हैं।
[संकेत (ii) : ये संख्याएँ होंगी : कुल संख्याएँ – 9 से विभाज्य संख्याएँ]
किसी AP के 11 वें पद का 18 वे पद से अनुपात 2 : 3 है। 5 वें पद का 21 वें पद से अनुपात ज्ञात कीजिए तथा साथ ही प्रथम पाँच पदों के योग का प्रथम 21 पदों के योग से अनुपात ज्ञात कीजिए।
दर्शाइए कि उस AP का योग, जिसका प्रथम पद a, द्वितीय पद b और अंतिम पद c हो, `((a + c)(b + c - 2a))/(2(b - a))` के बराबर है।
समीकरण – 4 + (−1) + 2 + ... + x = 437 को हल कीजिए।
जसपाल सिंह अपने कुल 118000 रु के ऋण को मासिक किस्तों में, 1000 रु की पहली किस्त से प्रारंभ करते हुए, चुकाता है। यदि वह प्रति मास की किश्त 100 रु बढ़ाता जाता है, तो उसके द्वारा 30 वीं किस्त में कितनी राशि चुकाई जाएगी? 30 वीं किस्त के बाद उसको कितना ऋण चुकाना और शेष रहेगा?
किसी स्कूल के विद्यार्थियों ने, स्कूल के वार्षिक दिवस के उपलक्ष्य में, स्कूल के सीधे मार्ग पर रंगीन झंडियाँ लगाकर स्कूल को सजाने का निर्णय लिया। उनके पास 27 झंडियाँ थीं जिन्हें प्रत्येक 2 मीटर के अंतराल पर लगाया जाना है। इन झंडियों को बीचो-बीच की झंडी के स्थान पर एकत्रित कर लिया जाता हैझंडियाँ लगाने का कार्य रुचि को सौंपा गया। रुचि ने अपनी पुस्तकें वहीं रख दीं जहाँ झंडियों को एकत्रित किया गया था। वह एक बार में केवल एक ही झंडी ले जा सकती है। उसने इस कार्य को पूरा करने तथा अपनी पुस्तकें ले आने के लिए कुल कितनी दूरी तय की ? एक झंडी हाथ में लिए हुए आते अधिकतम कितनी दूरी तय की?
Solutions for 5: समांतर श्रेढ़ी
![NCERT Exemplar solutions for Mathematics [Hindi] Class 10 chapter 5 - समांतर श्रेढ़ी NCERT Exemplar solutions for Mathematics [Hindi] Class 10 chapter 5 - समांतर श्रेढ़ी - Shaalaa.com](/images/mathematics-hindi-class-10_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
NCERT Exemplar solutions for Mathematics [Hindi] Class 10 chapter 5 - समांतर श्रेढ़ी
Shaalaa.com has the CBSE Mathematics Mathematics [Hindi] Class 10 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. NCERT Exemplar solutions for Mathematics Mathematics [Hindi] Class 10 CBSE 5 (समांतर श्रेढ़ी) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. NCERT Exemplar textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [Hindi] Class 10 chapter 5 समांतर श्रेढ़ी are भूमिका: समांतर श्रेढ़ियाँ, समांतर श्रेढ़ियाँ, A.P. का n वाँ पद, A.P. के प्रथम N पदों का योग.
Using NCERT Exemplar Mathematics [Hindi] Class 10 solutions समांतर श्रेढ़ी exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in NCERT Exemplar Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics [Hindi] Class 10 students prefer NCERT Exemplar Textbook Solutions to score more in exams.
Get the free view of Chapter 5, समांतर श्रेढ़ी Mathematics [Hindi] Class 10 additional questions for Mathematics Mathematics [Hindi] Class 10 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.