Advertisements
Advertisements
प्रश्न
किसी AP का प्रथम पद −5 और अंतिम पद 45 है। यदि इस AP के पदों का योग 120 हो, तो पदों की संख्या और सार्व अंतर ज्ञात कीजिए।
उत्तर
माना प्रथम पद, सार्व अंतर और किसी AP के पदों की संख्या क्रमशः a, d और n हैं।
दिया गया है कि, पहला पद (a) = −5 और
अंतिम पद (l) = 45
AP के पदों का योग = 120
⇒ Sn = 120
हम जानते हैं कि, यदि किसी AP का अंतिम पद ज्ञात हो, तब एक AP के n पदों का योग है,
Sn = `n/2(a + 1)`
⇒ 120 = `n/2(-5 + 45)`
⇒ 120 × 2 = 40 × n
⇒ n = 3 × 2
⇒ n = 6
∴ AP के पदों की संख्या ज्ञात है, तब एक AP का n वाँ पद है,
l = a + (n – 1)d
⇒ 45 = –5 + (6 – 1)d
⇒ 50 = 5d
⇒ d = 10
तो, सार्व अंतर 10 है।
अतः, एक AP के पदों की संख्या और सार्व अंतर क्रमशः 6 और 10 हैं।
APPEARS IN
संबंधित प्रश्न
नीचे दिए गए योगफल को ज्ञात कीजिए:
`7 + 10 1/2 + 14 + ... + 84`
किसी स्कूल के विद्यार्थियों के उनके समग्र शैक्षिक प्रदर्शन के लिए 7 नकद पुरस्कार देने के लिए ₹ 700 की राशि रखी गयी है। यदि प्रत्येक पुरस्कार अपने से ठीक पहले पुरस्कार से ₹ 20 कम है, तो प्रत्येक पुरस्कार का मान ज्ञात कीजिए।
एक आलू दौड़ (potato race) में, प्रारंभिक स्थान पर एक बाल्टी रखी हुई है, जो पहले आलू से 5m की दूरी पर है, तथा अन्य आलुओं को एक सीधी रेखा में परस्पर 3m की दूरियों पर रखा गया है। इस रेखा पर 10 आलू रखे गए हैं (देखिए आकृति)।
प्रत्येक प्रतियोगी बाल्टी से चलना प्रारंभ करती है, निकटतम आलू को उठाती है, उसे लेकर वापस आकर दौड़कर बाल्टी में डालती है, दूसरा आलू उठाने के लिए वापस दौड़ती है, उसे उठाकर वापस बाल्टी में डालती है, और वह ऐसा तब तक करती रहती है, जब तक सभी आलू बाल्टी में न आ जाएँ। इसमें प्रतियोगी को कुल कितनी दूरी दौड़नी पड़ेगी?
[संकेत: पहले और दूसरे आलुओं को उठाकर बाल्टी में डालने तक दौड़ी गई दूरी = 2 × 5 + 2 × (5 + 3) है।]
प्रथम 100 प्राकृत संख्याओं के योग को ज्ञात करने से संबद्ध प्रसिद्ध गणितज्ञ ______ है।
AP: `- 4/3, -1, -2/3,..., 4 1/3` के दोनों मध्य पदों का योग ज्ञात कीजिए।
किसी AP के प्रथम पाँच पदों के योग और उसी AP के प्रथम सात पदों के योग का योग 167 है। यदि इस AP के प्रथम दस पदों का योग 235 है, तो इसके प्रथम 20 पदों का योग ज्ञात कीजिए।
ज्ञात कीजिए :
1 और 500 के बीच के उन पूर्णांकों का योग जो 2 के भी गुणज हैं और 5 के भी गुणज हैं।
ज्ञात कीजिए :
1 से 500 तक के उन पूर्णांकों का योग जो 2 या 5 के गुणज हैं।
[संकेत (iii) : ये संख्याएँ होंगी : 2 के गुणज + 5 के गुणज – 2 और 5 दोनों के गुणज]
100 और 200 के बीच के उन पूर्णांकों का योग ज्ञात कीजिए, जो 9 से विभाज्य नहीं हैं।
[संकेत (ii) : ये संख्याएँ होंगी : कुल संख्याएँ– 9 से विभाज्य संख्याएँ]
समीकरण – 4 + (−1) + 2 + ... + x = 437 को हल कीजिए।