Advertisements
Advertisements
प्रश्न
AP: –2, –7, –12,... का कौन-सा पद –77 है? पद –77 तक इस AP का योग ज्ञात कीजिए।
उत्तर
दिया गया है, AP: –2, –7, –12,...
माना एक AP का n वाँ पद –77 है।
फिर, पहला पद (a) = –2 और
सामान्य अंतर (d) = –7 – (–2)
= –7 + 2
= –5
∵ किसी AP का n वाँ पद, Tn = a + (n – 1)d
⇒ –77 = –2 + (n – 1)(–5)
⇒ –75 = –(n – 1) × 5
⇒ (n – 1) = 15
⇒ n = 16
तो, दी गई AP का 16 वाँ पद –77 होगा।
अब, एक AP के n पदों का योग है।
Sn = `n/2[2a + (n - 1)d]`
तो, 16 पदों का योग अर्थात् पद –77 तक
S16 = `16/2[2 xx (-2) + (n - 1)(-5)]`
= 8[–4 + (16 – 1)(–5)]
= 8(–4 – 75)
= 8 × (–79)
= –632
अतः, पद –77 तक इस AP का योग –632 है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:
2, 7, 12, ......,10 पदों तक
निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:
-37, -33, -29,....,12 पदों तक
निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:
`1/15,1/12,1/10`, ...., 11 पदों तक
एक A.P. में, a3 = 15 और S10 = 125 दिया है। d और a10 ज्ञात कीजिए।
0 और 50 के बीच की विषम संख्याओं का योग ज्ञात कीजिए।
निर्माण कार्य से संबंधित किसी ठेके में, एक निश्चित तिथि के बाद कार्य को विलंब से पूरा करने के लिए, जुर्माना लगाने का प्रावधान इस प्रकार हैं: पहले दिन के लिए ₹ 200, दूसरे दिन के लिए ₹ 250, तीसरे दिन के लिए ₹ 300 इत्यादि, अर्थात् प्रत्येक उत्तरोत्तर दिन का जुर्माना अपने से ठीक पहले दिन के जुर्माने से ₹ 50 अधिक है। एक ठेकेदार को जुर्माने के रूप में कितनी राशि अदा करनी पड़ेगी, यदि वह इस कार्य में 30 दिन का विलंब कर देता है?
यदि Sn किसी AP के प्रथम n पदों का योग व्यक्त करता है, तो सिद्ध कीजिए कि S12 = 3(S8 – S4) है।
यदि किसी AP के प्रथम 6 पदों का योग 36 है तथा प्रथम 16 पदों का योग 256 है, तो उसके प्रथम 10 पदों का योग ज्ञात कीजिए।
प्रथम पद 8 और सार्व अंतर 20 वाली एक AP के प्रथम n पदों का योग एक अन्य AP के प्रथम 2n पदों के योग के बराबर है, जिसका प्रथम पद –30 और सार्व अंतर 8 है। n ज्ञात कीजिए।
किसी AP के प्रथम पाँच पदों के योग और उसी AP के प्रथम सात पदों के योग का योग 167 है। यदि इस AP के प्रथम दस पदों का योग 235 है, तो इसके प्रथम 20 पदों का योग ज्ञात कीजिए।