Advertisements
Advertisements
Question
AP: –2, –7, –12,... का कौन-सा पद –77 है? पद –77 तक इस AP का योग ज्ञात कीजिए।
Solution
दिया गया है, AP: –2, –7, –12,...
माना एक AP का n वाँ पद –77 है।
फिर, पहला पद (a) = –2 और
सामान्य अंतर (d) = –7 – (–2)
= –7 + 2
= –5
∵ किसी AP का n वाँ पद, Tn = a + (n – 1)d
⇒ –77 = –2 + (n – 1)(–5)
⇒ –75 = –(n – 1) × 5
⇒ (n – 1) = 15
⇒ n = 16
तो, दी गई AP का 16 वाँ पद –77 होगा।
अब, एक AP के n पदों का योग है।
Sn = `n/2[2a + (n - 1)d]`
तो, 16 पदों का योग अर्थात् पद –77 तक
S16 = `16/2[2 xx (-2) + (n - 1)(-5)]`
= 8[–4 + (16 – 1)(–5)]
= 8(–4 – 75)
= 8 × (–79)
= –632
अतः, पद –77 तक इस AP का योग –632 है।
APPEARS IN
RELATED QUESTIONS
नीचे दिए गए योगफल को ज्ञात कीजिए:
`7 + 10 1/2 + 14 + ... + 84`
एक A.P. में, a = 5, d = 3 और an = 50 दिया है। n और Sn ज्ञात कीजिए।
एक A.P. में, a = 7 और a13 = 35 दिया है। d और S13 ज्ञात कीजिए।
एक A.P. में, a = 8, an = 62 और Sn = 210 दिया है। n और d ज्ञात कीजिए।
प्रथम 100 प्राकृत संख्याओं के योग को ज्ञात करने से संबद्ध प्रसिद्ध गणितज्ञ ______ है।
यदि किसी AP का प्रथम पद –5 और सार्व अंतर 2 है, तो उसके प्रथम 6 पदों का योग ______ है।
किसी AP में, यदि a = 1, an = 20 और Sn = 399 हों, तो n बराबर ______ है।
यदि Sn किसी AP के प्रथम n पदों का योग व्यक्त करता है, तो सिद्ध कीजिए कि S12 = 3(S8 – S4) है।
100 और 200 के बीच के उन पूर्णांकों का योग ज्ञात कीजिए, जो
- 9 से विभाज्य हैं।
- 9 से विभाज्य नहीं हैं।
[संकेत (ii) : ये संख्याएँ होंगी : कुल संख्याएँ – 9 से विभाज्य संख्याएँ]
किसी AP के 11 वें पद का 18 वे पद से अनुपात 2 : 3 है। 5 वें पद का 21 वें पद से अनुपात ज्ञात कीजिए तथा साथ ही प्रथम पाँच पदों के योग का प्रथम 21 पदों के योग से अनुपात ज्ञात कीजिए।