हिंदी

100 और 200 के बीच के उन पूर्णांकों का योग ज्ञात कीजिए, जो 9 से विभाज्य हैं। 9 से विभाज्य नहीं हैं। [संकेत (ii) : ये संख्याएँ होंगी : कुल संख्याएँ – 9 से विभाज्य संख्याएँ] - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

100 और 200 के बीच के उन पूर्णांकों का योग ज्ञात कीजिए, जो

  1. 9 से विभाज्य हैं।
  2. 9 से विभाज्य नहीं हैं।

[संकेत (ii) : ये संख्याएँ होंगी : कुल संख्याएँ – 9 से विभाज्य संख्याएँ]

योग

उत्तर

i. 100 और 200 के बीच की संख्याएँ (पूर्णांक) जो 9 से विभाज्य हैं, 108, 117, 126,..., 198 हैं।

मान लीजिए n 100 और 200 के बीच पदों की संख्या है जो 9 से विभाज्य है।

यहाँ, a = 108, d = 117 – 108 = 9 और an = l = 198

⇒ 198 = 108 + (n – 1)9   ...[∵ an = l = a + (n – 1)d]

⇒ 90 = (n – 1)9

⇒ n – 1 = 10

⇒ n = 11

∴ 100 और 200 के बीच के पदों का योग जो 9 से विभाज्य है।

Sn = `n/2[2a + (n - 1)d]`

⇒ S11 = `11/2[2(108) + (11 - 1)9]`

= `1/2[216 + 90]`

= `11/2 xx 306`

= 11 × 153

= 1683

अतः, 100 और 200 के बीच 9 से विभाज्य पूर्णांकों का आवश्यक योग 1683 है।

ii. 100 और 200 के बीच के पूर्णांकों का योग जो 9 से विभाज्य नहीं है = (100 और 200 के बीच की कुल संख्याओं का योग) – (100 और 200 के बीच की कुल संख्याओं का योग जो 9 से विभाज्य है)  ...(i)

100 और 200 के बीच कुल संख्या 101, 102, 103,..., 199 है।

यहाँ, a = 101, d = 102 – 101 = 1 और an = l = 199

⇒ 199 = 101 + (n – 1)1    ...[∵ an = l = a + (n – 1)d]

⇒ (n – 1) = 98

⇒ n = 99

100 और 200 के बीच पदों का योग,

Sn = `n/2[2a + (n - 1)d]`

⇒ S99 = `99/2[2(101) + (99 - 1)1]`

= `99/2[202 + 98]`

= `99/2 xx 300`

= 99 × 150

= 14850

समीकरण (i) से, 100 और 200 के बीच पूर्णांकों का योग जो 9 से विभाज्य नहीं है।

= 14850 – 1683  ...[भाग (i) से]

= 13167

अतः, अभीष्ट योग 13167 है।

shaalaa.com
A.P. के प्रथम N पदों का योग
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: समांतर श्रेढ़ी - प्रश्नावली 5.4 [पृष्ठ ५९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 5 समांतर श्रेढ़ी
प्रश्नावली 5.4 | Q 5. | पृष्ठ ५९

संबंधित प्रश्न

एक A.P. में, a = 8, an = 62 और Sn = 210 दिया है। n और d ज्ञात कीजिए।


8 के प्रथम 15 गुणजों का योग ज्ञात कीजिए।


केंद्र A से प्रारंभ करते हुए, बारी-बारी से केंद्रों A और B को लेते हुए, त्रिज्याओं 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm,……. वाले उतरोत्तर अर्धवृत्तों को खींचकर एक सर्पिल (Spiral) बनाया गया है, जैसाकि आकृति में दर्शाया गया है। तेरह क्रमागत अर्धवृत्तों से बने इस सर्पिल की कुल लंबाई क्या है? (π = `22/7` लीजिए।)

[संकेत: क्रमशः केंद्रों A, B, A, B,... वाले अर्धवृत्तों की लंबाइयाँ l1, l2, l3, l4 हैं।]


एक सीढ़ी के क्रमागत डंडे परस्पर 25 cm की दूरी पर हैं (देखिए आकृति)। डंडों की लंबाई एक समान रूप से घटती जाती हैं तथा सबसे निचले डंडे की लंबाई 45 cm है और सबसे ऊपर वाले डंडे की लंबाई 25 cm है। यदि ऊपरी और निचले डंडे के बीच की दूरी `2 1/2` m है, तो डंडों को बनाने के लिए लकड़ी की कितनी लंबाई की आवश्यकता होगी?

[संकेत: डंडों की संख्या = `250/25 + 1` है।]

 


यदि किसी AP का प्रथम पद –5 और सार्व अंतर 2 है, तो उसके प्रथम 6 पदों का योग ______ है।


योग ज्ञात कीजिए :

`4 - 1/"n" + 4 - 2/"n" + 4 - 3/"n" + ... + "n पदों तक"`


यदि an = 3 – 4n हो, तो दर्शाइए कि a1, a2, a3,... एक AP बनाते हैं। S20 भी ज्ञात कीजिए।  


किसी AP में यदि Sn = 3n2 + 5n और ak = 164 है, तो k का मान ज्ञात कीजिए।  


जसपाल सिंह अपने कुल 118000 रु के ऋण को मासिक किस्तों में, 1000 रु की पहली किस्त से प्रारंभ करते हुए, चुकाता है। यदि वह प्रति मास की किश्त 100 रु बढ़ाता जाता है, तो उसके द्वारा 30 वीं किस्त में कितनी राशि चुकाई जाएगी? 30 वीं किस्त के बाद उसको कितना ऋण चुकाना और शेष रहेगा?


किसी स्कूल के विद्यार्थियों ने, स्कूल के वार्षिक दिवस के उपलक्ष्य में, स्कूल के सीधे मार्ग पर रंगीन झंडियाँ लगाकर स्कूल को सजाने का निर्णय लिया। उनके पास 27 झंडियाँ थीं जिन्हें प्रत्येक 2 मीटर के अंतराल पर लगाया जाना है। इन झंडियों को बीचो-बीच की झंडी के स्थान पर एकत्रित कर लिया जाता हैझंडियाँ लगाने का कार्य रुचि को सौंपा गया। रुचि ने अपनी पुस्तकें वहीं रख दीं जहाँ झंडियों को एकत्रित किया गया था। वह एक बार में केवल एक ही झंडी ले जा सकती है। उसने इस कार्य को पूरा करने तथा अपनी पुस्तकें ले आने के लिए कुल कितनी दूरी तय की ? एक झंडी हाथ में लिए हुए आते अधिकतम कितनी दूरी तय की?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×