Advertisements
Advertisements
प्रश्न
केंद्र A से प्रारंभ करते हुए, बारी-बारी से केंद्रों A और B को लेते हुए, त्रिज्याओं 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm,……. वाले उतरोत्तर अर्धवृत्तों को खींचकर एक सर्पिल (Spiral) बनाया गया है, जैसाकि आकृति में दर्शाया गया है। तेरह क्रमागत अर्धवृत्तों से बने इस सर्पिल की कुल लंबाई क्या है? (π = `22/7` लीजिए।)
[संकेत: क्रमशः केंद्रों A, B, A, B,... वाले अर्धवृत्तों की लंबाइयाँ l1, l2, l3, l4 हैं।]
उत्तर
अर्धवृत्त की लंबाई
= अर्ध परिधि = `1/2 (2pir) = pir`
l1 = πr1 = 0.5 π cm = 1 × 0.5 π cm
l2 = πr2 = 1.0 π cm = 2 × 0.5 π cm
l3 = πr3 = 1.5 π cm = 3 × 0.5 π cm
l4 = πr4 = 2.0 c cm = 4 × 0.5 π cm
l13 = πr13 = 13 × 0.5 π cm = 6.5 π cm
सर्पिल की लंबाई = l1 + l2 + l3 + l4 + ... + l13
= 0.5 π [1 + 2 + 3 + 4 + ... + 13] cm ....(1)
∴ 1, 2, 3, 4, ...., 13 AP में इस प्रकार हैं
a = l और l = 13
∴ `S_13 = 13/2 [1 + 13] ....[S_n = n/2 (a + l) "का प्रयोग करके"]`
= `13/2 xx 14`
= 13 × 7
= 91
∴ (1) से, हमारे पास है:
सर्पिल की कुल लंबाई = 0.5 π [91] cm
= `5/10 xx 22/7 xx 91` cm
= 11 × 13 cm
= 143 cm
APPEARS IN
संबंधित प्रश्न
निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:
-37, -33, -29,....,12 पदों तक
एक A.P. में, a = 8, an = 62 और Sn = 210 दिया है। n और d ज्ञात कीजिए।
एक A.P. में, an = 4, d = 2 और Sn = -14 दिया है। n और a ज्ञात कीजिए।
8 के प्रथम 15 गुणजों का योग ज्ञात कीजिए।
एक आलू दौड़ (potato race) में, प्रारंभिक स्थान पर एक बाल्टी रखी हुई है, जो पहले आलू से 5m की दूरी पर है, तथा अन्य आलुओं को एक सीधी रेखा में परस्पर 3m की दूरियों पर रखा गया है। इस रेखा पर 10 आलू रखे गए हैं (देखिए आकृति)।
प्रत्येक प्रतियोगी बाल्टी से चलना प्रारंभ करती है, निकटतम आलू को उठाती है, उसे लेकर वापस आकर दौड़कर बाल्टी में डालती है, दूसरा आलू उठाने के लिए वापस दौड़ती है, उसे उठाकर वापस बाल्टी में डालती है, और वह ऐसा तब तक करती रहती है, जब तक सभी आलू बाल्टी में न आ जाएँ। इसमें प्रतियोगी को कुल कितनी दूरी दौड़नी पड़ेगी?
[संकेत: पहले और दूसरे आलुओं को उठाकर बाल्टी में डालने तक दौड़ी गई दूरी = 2 × 5 + 2 × (5 + 3) है।]
किसी AP में, यदि a = 1, an = 20 और Sn = 399 हों, तो n बराबर ______ है।
3 के प्रथम पाँच गुणजों का योग ______ है।
AP: 8, 10, 12,..., 126 के अंतिम 10 पदों का योग ज्ञात कीजिए।
प्रथम पद 8 और सार्व अंतर 20 वाली एक AP के प्रथम n पदों का योग एक अन्य AP के प्रथम 2n पदों के योग के बराबर है, जिसका प्रथम पद –30 और सार्व अंतर 8 है। n ज्ञात कीजिए।
100 और 200 के बीच के उन पूर्णांकों का योग ज्ञात कीजिए, जो
- 9 से विभाज्य हैं।
- 9 से विभाज्य नहीं हैं।
[संकेत (ii) : ये संख्याएँ होंगी : कुल संख्याएँ – 9 से विभाज्य संख्याएँ]