Advertisements
Advertisements
प्रश्न
200 लट्ठों (logs) को ढेरी के रूप में इस प्रकार रखा जाता है : सबसे नीचे वाली पंक्ति में 20 लट्ठे, उससे अगली पंक्ति में 19 लट्ठे, उससे अगली पंक्ति में 18 लट्ठे, इत्यादि (देखिए आकृति)। ये 200 लठ्ठे कितनी पंक्तियों में रखे गए हैं तथा सबसे ऊपरी पंक्ति में कितने लट्ठे हैं?
उत्तर
यह देखा जा सकता है कि पंक्तियों में लट्ठों की संख्या एक A.P. में है।
20, 19, 18…
इस A.P. के लिए,
a = 20
d = a2 − a1
= 19 − 20
= −1
मान लीजिए कि कुल 200 लट्ठों को n पंक्तियों में रखा गया है।
Sn = 200
`S_n = n/2 [2a+(n-1)d]`
`200 = n/2 [2(20)+(n-1)(-1)]`
400 = n (40 − n + 1)
400 = n (41 − n)
400 = 41n − n2
n2 − 41n + 400 = 0
n2 − 16n − 25n + 400 = 0
n (n − 16) − 25 (n − 16) = 0
(n − 16) (n − 25) = 0
या तो (n − 16) = 0 या n− 25 = 0
n = 16 या n = 25
an = a + (n − 1)d
a16 = 20 + (16 − 1) (−1)
a16 = 20 − 15
a16 = 5
इसी प्रकार,
a25 = 20 + (25 − 1) (−1)
a25 = 20 − 24
a25 = −4
स्पष्ट रूप से, 16वीं पंक्ति में लट्ठे की संख्या 5 है। हालाँकि, 25वीं पंक्ति में लट्ठे की संख्या ऋणात्मक है, जो संभव नहीं है।
इसलिए, 16 पंक्तियों में 200 लट्ठे रखे जा सकते हैं और 16वीं पंक्ति में लट्ठे की संख्या 5 है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:
2, 7, 12, ......,10 पदों तक
निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:
-37, -33, -29,....,12 पदों तक
निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:
`1/15,1/12,1/10`, ...., 11 पदों तक
नीचे दिए गए योगफल को ज्ञात कीजिए:
34 + 32 + 30 + ... + 10
एक A.P. में, a12 = 37 और d = 3 दिया है। a और S12 ज्ञात कीजिए।
एक A.P. में, a = 3, n = 8 और S = 192 दिया है। d ज्ञात कीजिए।
8 के प्रथम 15 गुणजों का योग ज्ञात कीजिए।
योग ज्ञात कीजिए :
1 + (–2) + (–5) + (–8) + ... + (–236)
AP: 8, 10, 12,..., 126 के अंतिम 10 पदों का योग ज्ञात कीजिए।
दर्शाइए कि उस AP का योग, जिसका प्रथम पद a, द्वितीय पद b और अंतिम पद c हो, `((a + c)(b + c - 2a))/(2(b - a))` के बराबर है।