मराठी

200 लट्ठों (logs) को ढेरी के रूप में इस प्रकार रखा जाता है : सबसे नीचे वाली पंक्ति में 20 लट्ठे, उससे अगली पंक्ति में 19 लट्ठे, उससे अगली पंक्ति में 18 लट्ठे, इत्यादि (देखिए आकृति)। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

200 लट्ठों (logs) को ढेरी के रूप में इस प्रकार रखा जाता है : सबसे नीचे वाली पंक्ति में 20 लट्ठे, उससे अगली पंक्ति में 19 लट्ठे, उससे अगली पंक्ति में 18 लट्ठे, इत्यादि (देखिए आकृति)। ये 200 लठ्ठे कितनी पंक्तियों में रखे गए हैं तथा सबसे ऊपरी पंक्ति में कितने लट्ठे हैं?

बेरीज

उत्तर

यह देखा जा सकता है कि पंक्तियों में लट्ठों की संख्या एक A.P. में है।

20, 19, 18…

इस A.P. के लिए,

a = 20

d = a2 − a1 

= 19 − 20

= −1

मान लीजिए कि कुल 200 लट्ठों को n पंक्तियों में रखा गया है।

Sn = 200

`S_n = n/2 [2a+(n-1)d]`

`200 = n/2 [2(20)+(n-1)(-1)]`

400 = n (40 − n + 1)

400 = n (41 − n)

400 = 41n − n2

n2 − 41n + 400 = 0

n2 − 16n − 25n + 400 = 0

n (n − 16) − 25 (n − 16) = 0

(n − 16) (n − 25) = 0

या तो (n − 16) = 0 या n− 25 = 0

n = 16 या n = 25

an = a + (n − 1)d

a16 = 20 + (16 − 1) (−1)

a16 = 20 − 15

a16 = 5

इसी प्रकार,

a25 = 20 + (25 − 1) (−1)

a25 = 20 − 24

a25 = −4

स्पष्ट रूप से, 16वीं पंक्ति में लट्ठे की संख्या 5 है। हालाँकि, 25वीं पंक्ति में लट्ठे की संख्या ऋणात्मक है, जो संभव नहीं है।

इसलिए, 16 पंक्तियों में 200 लट्ठे रखे जा सकते हैं और 16वीं पंक्ति में लट्ठे की संख्या 5 है।

shaalaa.com
A.P. के प्रथम N पदों का योग
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: समांतर श्रेढ़ीयाँ - प्रश्नावली 5.3 [पृष्ठ १२६]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
पाठ 5 समांतर श्रेढ़ीयाँ
प्रश्नावली 5.3 | Q 19. | पृष्ठ १२६

संबंधित प्रश्‍न

एक A.P. में, a3 = 15 और S10 = 125 दिया है। d और a10 ज्ञात कीजिए।


एक A.P. में, d = 5 और S9 = 75 दिया है। a और a9 ज्ञात कीजिए।


एक A.P. में, a = 8, an = 62 और Sn = 210 दिया है। n और d ज्ञात कीजिए।


किसी AP का प्रथम पद −5 और अंतिम पद 45 है। यदि इस AP के पदों का योग 120 हो, तो पदों की संख्या और सार्व अंतर ज्ञात कीजिए।


AP: –2, –7, –12,... का कौन-सा पद –77 है? पद –77 तक इस AP का योग ज्ञात कीजिए।


किसी AP में यदि Sn = 3n2 + 5n और ak = 164 है, तो k का मान ज्ञात कीजिए।  


यदि किसी AP के प्रथम 6 पदों का योग 36 है तथा प्रथम 16 पदों का योग 256 है, तो उसके प्रथम 10 पदों का योग ज्ञात कीजिए।


AP: 8, 10, 12,..., 126 के अंतिम 10 पदों का योग ज्ञात कीजिए।


किसी AP के प्रथम पाँच पदों के योग और उसी AP के प्रथम सात पदों के योग का योग 167 है। यदि इस AP के प्रथम दस पदों का योग 235 है, तो इसके प्रथम 20 पदों का योग ज्ञात कीजिए।


समीकरण – 4 + (−1) + 2 + ... + x = 437 को हल कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×