मराठी

किसी AP के प्रथम पाँच पदों के योग और उसी AP के प्रथम सात पदों के योग का योग 167 है। यदि इस AP के प्रथम दस पदों का योग 235 है, तो इसके प्रथम 20 पदों का योग ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

किसी AP के प्रथम पाँच पदों के योग और उसी AP के प्रथम सात पदों के योग का योग 167 है। यदि इस AP के प्रथम दस पदों का योग 235 है, तो इसके प्रथम 20 पदों का योग ज्ञात कीजिए।

बेरीज

उत्तर

मान लीजिए कि एक AP का पहला पद, सार्व अंतर और पदों की संख्या क्रमशः a, d और n हैं।

∵ AP के प्रथम n पदों का योग,

Sn = `n/2[2a + (n - 1)d]`  ...(i)

∴ किसी AP के पहले पाँच पदों का योग,

S5 = `5/2[2a + (5 - 1)d]`  ...[समीकरण (i) से]

= `5/2(2a + 4d)`

= 5(a + 2d)

⇒ S5 = 5a + 10d  ...(ii)

और किसी AP के पहले सात पदों का योग,

S7 = `7/2[2a + (7 - 1)d]`

= `7/2[2a + 6d]`

= 7(a + 3d)

⇒ S7 = 7a + 21d   ...(iii)

अब, दी गई शर्त से,

S5 + S7 = 167

⇒ 5a + 10d + 7a + 21d = 167

⇒ 12a + 31d = 167  ...(iv)

दिया गया है कि, इस AP के पहले दस पदों का योग 235 है।

∴ S10 = 235

⇒ `10/2 [2a + (10 - 1)d]` = 235

⇒ 5(2a + 9d) = 235

⇒ 2a + 9d = 47  ...(v)

समीकरण (v) को 6 से गुणा करके समीकरण (iv) में घटाने पर, हमें प्राप्त होता है।

12a + 54d = 282
12a + 31d = 167
  –       –        –    
          23d = 115

⇒ d = 5

अब, d का मान समीकरण (v) में रखें, हमें मिलता है।

2a + 9(5) = 47

⇒ 2a + 45 = 47

⇒ 2a = 47 – 45 = 2

⇒ a = 1

इस AP के पहले बीस पदों का योग,

S20 = `20/2[2a + (20 - 1)d]`

= 10[2 × (1) + 19 × (5)]

= 10(2 + 95)

= 10 × 97

= 970

अतः, इसके पहले बीस पदों का आवश्यक योग 970 है।

shaalaa.com
A.P. के प्रथम N पदों का योग
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: समांतर श्रेढ़ी - प्रश्नावली 5.4 [पृष्ठ ५९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 5 समांतर श्रेढ़ी
प्रश्नावली 5.4 | Q 1. | पृष्ठ ५९

संबंधित प्रश्‍न

निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:

-37, -33, -29,....,12 पदों तक


निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:

`1/15,1/12,1/10`, ...., 11 पदों तक


636 योग प्राप्त करने के लिए, AP.: 9, 17, 25, … के कितने पद लेने चाहिए?


निर्माण कार्य से संबंधित किसी ठेके में, एक निश्चित तिथि के बाद कार्य को विलंब से पूरा करने के लिए, जुर्माना लगाने का प्रावधान इस प्रकार हैं: पहले दिन के लिए ₹ 200, दूसरे दिन के लिए ₹ 250, तीसरे दिन के लिए ₹ 300 इत्यादि, अर्थात् प्रत्येक उत्तरोत्तर दिन का जुर्माना अपने से ठीक पहले दिन के जुर्माने से ₹ 50 अधिक है। एक ठेकेदार को जुर्माने के रूप में कितनी राशि अदा करनी पड़ेगी, यदि वह इस कार्य में 30 दिन का विलंब कर देता है?


एक आलू दौड़ (potato race) में, प्रारंभिक स्थान पर एक बाल्टी रखी हुई है, जो पहले आलू से 5m की दूरी पर है, तथा अन्य आलुओं को एक सीधी रेखा में परस्पर 3m की दूरियों पर रखा गया है। इस रेखा पर 10 आलू रखे गए हैं (देखिए आकृति)।

प्रत्येक प्रतियोगी बाल्टी से चलना प्रारंभ करती है, निकटतम आलू को उठाती है, उसे लेकर वापस आकर दौड़कर बाल्टी में डालती है, दूसरा आलू उठाने के लिए वापस दौड़ती है, उसे उठाकर वापस बाल्टी में डालती है, और वह ऐसा तब तक करती रहती है, जब तक सभी आलू बाल्टी में न आ जाएँ। इसमें प्रतियोगी को कुल कितनी दूरी दौड़नी पड़ेगी?

[संकेत: पहले और दूसरे आलुओं को उठाकर बाल्टी में डालने तक दौड़ी गई दूरी = 2 × 5 + 2 × (5 + 3) है।]


AP: `- 4/3, -1, -2/3,..., 4 1/3` के दोनों मध्य पदों का योग ज्ञात कीजिए।


यदि किसी AP के प्रथम 6 पदों का योग 36 है तथा प्रथम 16 पदों का योग 256 है, तो उसके प्रथम 10 पदों का योग ज्ञात कीजिए।


उस AP के सभी 11 पदों का योग ज्ञात कीजिए, जिसका मध्य पद 30 है।


ऐसी प्रथम सात संख्याओं का योग ज्ञात कीजिए, जो 2 का गुणज हैं और 9 का भी गुणज हैं।

[संकेत : 2 और 9 का LCM ज्ञात कीजिए।]


किसी AP के 11 वें पद का 18 वे पद से अनुपात 2 : 3 है। 5 वें पद का 21 वें पद से अनुपात ज्ञात कीजिए तथा साथ ही प्रथम पाँच पदों के योग का प्रथम 21 पदों के योग से अनुपात ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×