Advertisements
Advertisements
प्रश्न
उस AP के सभी 11 पदों का योग ज्ञात कीजिए, जिसका मध्य पद 30 है।
उत्तर
चूँकि, पदों की कुल संख्या (n) = 11 ...[विषम]
∴ सबसे मध्य पद = `(n + 1)^("th")/2` पद
= `((11 + 1)/2)^("th")` पद
= छठा पद
मान लें कि,
a6 = 30 ...[∵ an = a + (n − 1)d]
⇒ a + (6 − 1)d = 30
⇒ a + 5d = 30 ...(i)
∵ किसी AP के n पदों का योग,
Sn = `n/2[2a + (n - 1)d]`
∴ S11 = `11/2[2a + (11 - 1)d]`
= `11/2(2a + 10d)`
= 11(a + 5d)
= 11 × 30 ...[समीकरण (i) से]
= 330
APPEARS IN
संबंधित प्रश्न
निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:
`1/15,1/12,1/10`, ...., 11 पदों तक
नीचे दिए गए योगफल को ज्ञात कीजिए:
34 + 32 + 30 + ... + 10
एक A.P. में, d = 5 और S9 = 75 दिया है। a और a9 ज्ञात कीजिए।
एक A.P. में, a = 3, n = 8 और S = 192 दिया है। d ज्ञात कीजिए।
636 योग प्राप्त करने के लिए, AP.: 9, 17, 25, … के कितने पद लेने चाहिए?
200 लट्ठों (logs) को ढेरी के रूप में इस प्रकार रखा जाता है : सबसे नीचे वाली पंक्ति में 20 लट्ठे, उससे अगली पंक्ति में 19 लट्ठे, उससे अगली पंक्ति में 18 लट्ठे, इत्यादि (देखिए आकृति)। ये 200 लठ्ठे कितनी पंक्तियों में रखे गए हैं तथा सबसे ऊपरी पंक्ति में कितने लट्ठे हैं?
ज्ञात कीजिए कि 55 एक AP : 7, 10, 13,... का पद है या नहीं। यदि हाँ, तो ज्ञात कीजिए कि यह कौन-सा पद है।
किसी AP का प्रथम पद −5 और अंतिम पद 45 है। यदि इस AP के पदों का योग 120 हो, तो पदों की संख्या और सार्व अंतर ज्ञात कीजिए।
यदि an = 3 – 4n हो, तो दर्शाइए कि a1, a2, a3,... एक AP बनाते हैं। S20 भी ज्ञात कीजिए।
100 और 200 के बीच के उन पूर्णांकों का योग ज्ञात कीजिए, जो
- 9 से विभाज्य हैं।
- 9 से विभाज्य नहीं हैं।
[संकेत (ii) : ये संख्याएँ होंगी : कुल संख्याएँ – 9 से विभाज्य संख्याएँ]