Advertisements
Advertisements
प्रश्न
यदि an = 3 – 4n हो, तो दर्शाइए कि a1, a2, a3,... एक AP बनाते हैं। S20 भी ज्ञात कीजिए।
उत्तर
दिया गया है कि, श्रृंखला का n वाँ पद है।
an = 3 – 4n ...(i)
n = 1 रखने पर,
a1 = 3 – 4(1)
= 3 – 4
= –1
n = 2 रखने पर,
a2 = 3 – 4(2)
= 3 – 8
= –5
n = 3 रखने पर,
a3 = 3 – 4(3)
= 3 – 12
= –9
n = 4 रखने पर,
a4 = 3 – 4(4)
= 3 – 16
= –13
तो, श्रृंखला –1, –5, –9, –13,... हो जाती है।
हम देखते है कि,
a2 – a1
= –5 – (–1)
= –5 + 1
= –4
a3 – a2
= –9 – (–5)
= –9 + 5
= –4
a4 – a3
= –13 – (–9)
= –13 + 9
= –4
i.e., a2 – a1 = a3 – a2 = a4 – a3 = ... = –4
चूँकि श्रृंखला के प्रत्येक क्रमिक पद का अंतर समान है।
तो, यह एक AP बनाता है।
हम जानते हैं कि, किसी AP के n पदों का योग,
Sn = `n/2[2a + (n - 1)d]`
∴ AP के 20 पदों का योग,
S20 = `20/2[2(-1) + (20 - 1)(-4)]`
= 10[–2 + (19)(–4)]
= 10(–2 – 76)
= 10 × (–78)
= –780
अतः, 20 पदों का आवश्यक योग अर्थात S20 – 780 है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:
2, 7, 12, ......,10 पदों तक
निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:
`1/15,1/12,1/10`, ...., 11 पदों तक
नीचे दिए गए योगफल को ज्ञात कीजिए:
-5 + (-8) + (-11) + ... + (-230)
एक A.P. में, a = 8, an = 62 और Sn = 210 दिया है। n और d ज्ञात कीजिए।
प्रथम 100 प्राकृत संख्याओं के योग को ज्ञात करने से संबद्ध प्रसिद्ध गणितज्ञ ______ है।
AP: `- 4/3, -1, -2/3,..., 4 1/3` के दोनों मध्य पदों का योग ज्ञात कीजिए।
योग ज्ञात कीजिए :
1 + (–2) + (–5) + (–8) + ... + (–236)
AP: 8, 10, 12,..., 126 के अंतिम 10 पदों का योग ज्ञात कीजिए।
किसी AP के प्रथम पाँच पदों के योग और उसी AP के प्रथम सात पदों के योग का योग 167 है। यदि इस AP के प्रथम दस पदों का योग 235 है, तो इसके प्रथम 20 पदों का योग ज्ञात कीजिए।
100 और 200 के बीच के उन पूर्णांकों का योग ज्ञात कीजिए, जो
- 9 से विभाज्य हैं।
- 9 से विभाज्य नहीं हैं।
[संकेत (ii) : ये संख्याएँ होंगी : कुल संख्याएँ – 9 से विभाज्य संख्याएँ]