Advertisements
Advertisements
प्रश्न
केंद्र A से प्रारंभ करते हुए, बारी-बारी से केंद्रों A और B को लेते हुए, त्रिज्याओं 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm,……. वाले उतरोत्तर अर्धवृत्तों को खींचकर एक सर्पिल (Spiral) बनाया गया है, जैसाकि आकृति में दर्शाया गया है। तेरह क्रमागत अर्धवृत्तों से बने इस सर्पिल की कुल लंबाई क्या है? (π = `22/7` लीजिए।)
[संकेत: क्रमशः केंद्रों A, B, A, B,... वाले अर्धवृत्तों की लंबाइयाँ l1, l2, l3, l4 हैं।]
उत्तर
अर्धवृत्त की लंबाई
= अर्ध परिधि = `1/2 (2pir) = pir`
l1 = πr1 = 0.5 π cm = 1 × 0.5 π cm
l2 = πr2 = 1.0 π cm = 2 × 0.5 π cm
l3 = πr3 = 1.5 π cm = 3 × 0.5 π cm
l4 = πr4 = 2.0 c cm = 4 × 0.5 π cm
l13 = πr13 = 13 × 0.5 π cm = 6.5 π cm
सर्पिल की लंबाई = l1 + l2 + l3 + l4 + ... + l13
= 0.5 π [1 + 2 + 3 + 4 + ... + 13] cm ....(1)
∴ 1, 2, 3, 4, ...., 13 AP में इस प्रकार हैं
a = l और l = 13
∴ `S_13 = 13/2 [1 + 13] ....[S_n = n/2 (a + l) "का प्रयोग करके"]`
= `13/2 xx 14`
= 13 × 7
= 91
∴ (1) से, हमारे पास है:
सर्पिल की कुल लंबाई = 0.5 π [91] cm
= `5/10 xx 22/7 xx 91` cm
= 11 × 13 cm
= 143 cm
APPEARS IN
संबंधित प्रश्न
नीचे दिए गए योगफल को ज्ञात कीजिए:
`7 + 10 1/2 + 14 + ... + 84`
नीचे दिए गए योगफल को ज्ञात कीजिए:
-5 + (-8) + (-11) + ... + (-230)
एक A.P. में, d = 5 और S9 = 75 दिया है। a और a9 ज्ञात कीजिए।
ऐसे प्रथम 40 धन पूर्णांकों का योग ज्ञात कीजिए जो 6 से विभाज्य हैं।
यदि किसी AP का प्रथम पद –5 और सार्व अंतर 2 है, तो उसके प्रथम 6 पदों का योग ______ है।
3 के प्रथम पाँच गुणजों का योग ______ है।
किसी AP में यदि Sn = 3n2 + 5n और ak = 164 है, तो k का मान ज्ञात कीजिए।
उस AP के प्रथम 17 पदों का योग ज्ञात कीजिए, जिसके चौथे और 9 वें पद क्रमशः –15 और –30 हैं।
उस AP के सभी 11 पदों का योग ज्ञात कीजिए, जिसका मध्य पद 30 है।
ऐसी प्रथम सात संख्याओं का योग ज्ञात कीजिए, जो 2 का गुणज हैं और 9 का भी गुणज हैं।
[संकेत : 2 और 9 का LCM ज्ञात कीजिए।]