Advertisements
Advertisements
प्रश्न
यदि किसी AP का प्रथम पद –5 और सार्व अंतर 2 है, तो उसके प्रथम 6 पदों का योग ______ है।
पर्याय
0
5
6
15
उत्तर
यदि किसी AP का प्रथम पद -5 और सार्व अंतर 2 है, तो उसके प्रथम 6 पदों का योग 0 है।
स्पष्टीकरण:
दिया गया,
a = –5
और d = 2
∴ S6 = `6/2[2a + (6 - 1)d]` ...`[∵ S_n = n/2[2a + (n - 1)d]]`
= 3[2(–5) + 5(2)]
= 3(–10 + 10)
= 0
APPEARS IN
संबंधित प्रश्न
निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:
2, 7, 12, ......,10 पदों तक
निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:
0.6, 1.7, 2.8, ....,100 पदों तक
नीचे दिए गए योगफल को ज्ञात कीजिए:
-5 + (-8) + (-11) + ... + (-230)
किसी AP में, यदि a = 1, an = 20 और Sn = 399 हों, तो n बराबर ______ है।
योग ज्ञात कीजिए :
`(a - b)/(a + b) + (3a - 2b)/(a + b) + (5a - 3b)/(a + b) + ...` 11 पदों तक
यदि an = 3 – 4n हो, तो दर्शाइए कि a1, a2, a3,... एक AP बनाते हैं। S20 भी ज्ञात कीजिए।
उस AP के प्रथम 17 पदों का योग ज्ञात कीजिए, जिसके चौथे और 9 वें पद क्रमशः –15 और –30 हैं।
यदि किसी AP के प्रथम 6 पदों का योग 36 है तथा प्रथम 16 पदों का योग 256 है, तो उसके प्रथम 10 पदों का योग ज्ञात कीजिए।
किसी AP में 37 पद हैं। बीचो-बीच के तीन पदों का योग 225 है तथा अंतिम तीन पदों का योग 429 है। वह AP ज्ञात कीजिए।
समीकरण – 4 + (−1) + 2 + ... + x = 437 को हल कीजिए।