Advertisements
Advertisements
प्रश्न
किसी AP में, यदि a = 1, an = 20 और Sn = 399 हों, तो n बराबर ______ है।
पर्याय
19
21
38
42
उत्तर
किसी AP में, यदि a = 1, an = 20 और Sn = 399 हों, तो n बराबर 38 है।
स्पष्टीकरण:
∵ Sn = `n/2[2a + (n - 1)d]`
339 = `n/2[2 xx 1 + (n - 1)d]`
798 = 2n + n(n – 1)d ...(i)
और an = 20
⇒ a + (n – 1)d = 20 ...[∵ an = a + (n – 1)d]
⇒ 1 + (n – 1)d = 20
⇒ (n – 1)d = 19 ...(ii)
समीकरण (i) में समीकरण (ii) का उपयोग करने पर, हमें प्राप्त होता है।
798 = 2n + 19n
⇒ 798 = 21n
∴ n = `798/21` = 38
APPEARS IN
संबंधित प्रश्न
निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:
`1/15,1/12,1/10`, ...., 11 पदों तक
नीचे दिए गए योगफल को ज्ञात कीजिए:
-5 + (-8) + (-11) + ... + (-230)
एक A.P. में, l = 28, S = 144 और कुल 9 पद हैं। a ज्ञात कीजिए।
636 योग प्राप्त करने के लिए, AP.: 9, 17, 25, … के कितने पद लेने चाहिए?
0 और 50 के बीच की विषम संख्याओं का योग ज्ञात कीजिए।
AP: `- 4/3, -1, -2/3,..., 4 1/3` के दोनों मध्य पदों का योग ज्ञात कीजिए।
योग ज्ञात कीजिए :
1 + (–2) + (–5) + (–8) + ... + (–236)
योग ज्ञात कीजिए :
`4 - 1/"n" + 4 - 2/"n" + 4 - 3/"n" + ... + "n पदों तक"`
यदि an = 3 – 4n हो, तो दर्शाइए कि a1, a2, a3,... एक AP बनाते हैं। S20 भी ज्ञात कीजिए।
किसी AP के प्रथम पाँच पदों के योग और उसी AP के प्रथम सात पदों के योग का योग 167 है। यदि इस AP के प्रथम दस पदों का योग 235 है, तो इसके प्रथम 20 पदों का योग ज्ञात कीजिए।