Advertisements
Advertisements
प्रश्न
एक A.P. में, an = 4, d = 2 और Sn = -14 दिया है। n और a ज्ञात कीजिए।
उत्तर
दिया गया है कि, an = 4, d = 2, Sn = −14
an = a + (n − 1)d
4 = a + (n − 1)2
4 = a + 2n − 2
a + 2n = 6
a = 6 − 2n ...(i)
`S_n = n/2[a+a_n]`
`-14=n/2[a+4]`
−28 = n (a + 4)
−28 = n (6 − 2n + 4) ...[समीकरण (i) से]
−28 = n (− 2n + 10)
−28 = − 2n2 + 10n
2n2 − 10n − 28 = 0
n2 − 5n −14 = 0
n2 − 7n + 2n − 14 = 0
n (n − 7) + 2(n − 7) = 0
(n − 7) (n + 2) = 0
या तो n − 7 = 0 या n + 2 = 0
n = 7 या n = −2
हालाँकि, n न तो ऋणात्मक हो सकता है और न ही भिन्नात्मक।
इसलिए, n = 7
समीकरण (i) से, हम प्राप्त करते हैं
a = 6 − 2n
a = 6 − 2(7)
a = 6 − 14
a = −8
APPEARS IN
संबंधित प्रश्न
एक A.P. में, a = 5, d = 3 और an = 50 दिया है। n और Sn ज्ञात कीजिए।
एक A.P. में, a3 = 15 और S10 = 125 दिया है। d और a10 ज्ञात कीजिए।
प्रथम 100 प्राकृत संख्याओं के योग को ज्ञात करने से संबद्ध प्रसिद्ध गणितज्ञ ______ है।
AP: 10, 6, 2,... के प्रथम 16 पदों का योग ______ है।
योग ज्ञात कीजिए :
`(a - b)/(a + b) + (3a - 2b)/(a + b) + (5a - 3b)/(a + b) + ...` 11 पदों तक
AP: –2, –7, –12,... का कौन-सा पद –77 है? पद –77 तक इस AP का योग ज्ञात कीजिए।
यदि Sn किसी AP के प्रथम n पदों का योग व्यक्त करता है, तो सिद्ध कीजिए कि S12 = 3(S8 – S4) है।
उस AP के सभी 11 पदों का योग ज्ञात कीजिए, जिसका मध्य पद 30 है।
ज्ञात कीजिए :
1 से 500 तक के उन पूर्णांकों का योग जो 2 या 5 के गुणज हैं।
[संकेत (iii) : ये संख्याएँ होंगी : 2 के गुणज + 5 के गुणज – 2 और 5 दोनों के गुणज]
किसी AP में 37 पद हैं। बीचो-बीच के तीन पदों का योग 225 है तथा अंतिम तीन पदों का योग 429 है। वह AP ज्ञात कीजिए।