English

Commerce (English Medium) Class 12 - CBSE Question Bank Solutions for Mathematics

Advertisements
[object Object]
[object Object]
Subjects
Popular subjects
Topics
Advertisements
Advertisements
Mathematics
< prev  61 to 80 of 10703  next > 

Evaluate the following:

`tan^-1(tan  (5pi)/6)+cos^-1{cos((13pi)/6)}`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Find the set of values of `cosec^-1(sqrt3/2)`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Advertisements

Find the domain of `f(x)=cotx+cot^-1x`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Evaluate the following:

`cot^-1  1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Evaluate the following:

`cot^-1{2cos(sin^-1  sqrt3/2)}`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Evaluate the following:

`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Evaluate the following:

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Test the continuity of the function on f(x) at the origin: 

\[f\left( x \right) = \begin{cases}\frac{x}{\left| x \right|}, & x \neq 0 \\ 1 , & x = 0\end{cases}\] 

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

What is the value of the determinant \[\begin{vmatrix}0 & 2 & 0 \\ 2 & 3 & 4 \\ 4 & 5 & 6\end{vmatrix} ?\]

[0.04] Determinants
Chapter: [0.04] Determinants
Concept: undefined > undefined

Write the value of the determinant \[\begin{vmatrix}p & p + 1 \\ p - 1 & p\end{vmatrix}\]

[0.04] Determinants
Chapter: [0.04] Determinants
Concept: undefined > undefined

Write the value of the determinant \[\begin{vmatrix}x + y & y + z & z + x \\ z & x & y \\ - 3 & - 3 & - 3\end{vmatrix}\]

[0.04] Determinants
Chapter: [0.04] Determinants
Concept: undefined > undefined

Prove that the function 

\[f\left( x \right) = \begin{cases}\frac{x}{\left| x \right| + 2 x^2}, & x \neq 0 \\ k , & x = 0\end{cases}\]  remains discontinuous at x = 0, regardless the choice of k.
[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

If the determinant \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0 \text{ is }\] 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

[0.04] Determinants
Chapter: [0.04] Determinants
Concept: undefined > undefined

If \[A_r = \begin{vmatrix}1 & r & 2^r \\ 2 & n & n^2 \\ n & \frac{n \left( n + 1 \right)}{2} & 2^{n + 1}\end{vmatrix}\] , then the value of \[\sum^n_{r = 1} A_r\] is

[0.04] Determinants
Chapter: [0.04] Determinants
Concept: undefined > undefined

For what value of λ is the function 
\[f\left( x \right) = \begin{cases}\lambda( x^2 - 2x), & \text{ if }  x \leq 0 \\ 4x + 1 , & \text{  if } x > 0\end{cases}\]continuous at x = 0? What about continuity at x = ± 1?

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

Find the relationship between 'a' and 'b' so that the function 'f' defined by 

\[f\left( x \right) = \begin{cases}ax + 1, & \text{ if }  x \leq 3 \\ bx + 3, & \text{ if } x > 3\end{cases}\] is continuous at x = 3.

 

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\left| x \right| + 3 , & \text{ if } x \leq - 3 \\ - 2x , & \text { if }  - 3 < x < 3 \\ 6x + 2 , & \text{ if }  x > 3\end{cases}\]
[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}2x , & \text{ if }  & x < 0 \\ 0 , & \text{ if }  & 0 \leq x \leq 1 \\ 4x , & \text{ if }  & x > 1\end{cases}\]

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}x^{10} - 1, & \text{ if }  x \leq 1 \\ x^2 , & \text{ if } x > 1\end{cases}\]

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}- 2 , & \text{ if }& x \leq - 1 \\ 2x , & \text{ if } & - 1 < x < 1 \\ 2 , & \text{ if }  & x \geq 1\end{cases}\]

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined
< prev  61 to 80 of 10703  next > 
Advertisements
Advertisements
CBSE Commerce (English Medium) Class 12 Question Bank Solutions
Question Bank Solutions for CBSE Commerce (English Medium) Class 12 Accountancy
Question Bank Solutions for CBSE Commerce (English Medium) Class 12 Business Studies
Question Bank Solutions for CBSE Commerce (English Medium) Class 12 Computer Science (Python)
Question Bank Solutions for CBSE Commerce (English Medium) Class 12 Economics
Question Bank Solutions for CBSE Commerce (English Medium) Class 12 English Core
Question Bank Solutions for CBSE Commerce (English Medium) Class 12 English Elective - NCERT
Question Bank Solutions for CBSE Commerce (English Medium) Class 12 Entrepreneurship
Question Bank Solutions for CBSE Commerce (English Medium) Class 12 Geography
Question Bank Solutions for CBSE Commerce (English Medium) Class 12 Hindi (Core)
Question Bank Solutions for CBSE Commerce (English Medium) Class 12 Hindi (Elective)
Question Bank Solutions for CBSE Commerce (English Medium) Class 12 History
Question Bank Solutions for CBSE Commerce (English Medium) Class 12 Informatics Practices
Question Bank Solutions for CBSE Commerce (English Medium) Class 12 Mathematics
Question Bank Solutions for CBSE Commerce (English Medium) Class 12 Physical Education
Question Bank Solutions for CBSE Commerce (English Medium) Class 12 Political Science
Question Bank Solutions for CBSE Commerce (English Medium) Class 12 Psychology
Question Bank Solutions for CBSE Commerce (English Medium) Class 12 Sanskrit (Core)
Question Bank Solutions for CBSE Commerce (English Medium) Class 12 Sanskrit (Elective)
Question Bank Solutions for CBSE Commerce (English Medium) Class 12 Sociology
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×