Topics
Electric Charges and Fields
- Electric Charges
- Conductors and Insulators
- Basic Properties of Electric Charge
- Coulomb’s Law - Force Between Two Point Charges
- Superposition Principle - Forces Between Multiple Charges
- Introduction of Electric Field
- Electric Field Due to a System of Charges
- Physical Significance of Electric Field
- Electric Field Lines
- Electric Flux
- Electric Dipole
- Dipole in a Uniform External Field
- Continuous Distribution of Charges
- Gauss’s Law
- Applications of Gauss’s Law
- Charging by Induction
- Electric Field Due to a Point Charge
- Uniformly Charged Infinite Plane Sheet and Uniformly Charged Thin Spherical Shell (Field Inside and Outside)
- Superposition Principle of Forces
- Force Between Two Point Charges
Electrostatics
Electrostatic Potential and Capacitance
- Electric Potential
- Potential Due to a Point Charge
- Potential Due to an Electric Dipole
- Potential Due to a System of Charges
- Equipotential Surfaces
- Relation Between Electric Field and Electrostatic Potential
- Potential Energy of a System of Charges
- Potential Energy of a Single Charge
- Potential Energy of a System of Two Charges in an External Field
- Potential Energy of a Dipole in an External Field
- Electrostatics of Conductors
- Dielectrics and Polarisation
- Capacitors and Capacitance
- The Parallel Plate Capacitor
- Effect of Dielectric on Capacity
- Combination of Capacitors
- Energy Stored in a Capacitor
- Van De Graaff Generator
- Capacitance of a Parallel Plate Capacitor with and Without Dielectric Medium Between the Plates
- Free Charges and Bound Charges Inside a Conductor
- Conductors and Insulators Related to Electric Field
- Electrical Potential Energy of a System of Two Point Charges and of Electric Dipole in an Electrostatic Field
- Electric Potential Difference
Current Electricity
Magnetic Effects of Current and Magnetism
Current Electricity
- Electric Current
- Electric Currents in Conductors
- Ohm's Law (V = IR)
- Current Density
- Drift of Electrons and the Origin of Resistivity
- Limitations of Ohm’s Law
- Resistivity of Various Materials
- Temperature Dependence of Resistance
- Electrical Power
- Cells, Emf, Internal Resistance
- Combination of Cells in Series and in Parallel
- Kirchhoff’s Rules
- Wheatstone Bridge
- Conductivity and Conductance;
- Delta Star Transformation
- Potential Difference and Emf of a Cell
- Measurement of Internal Resistance of a Cell
- Potentiometer
- Metre Bridge
- Combination of Resistors - Series and Parallel
- Electrical Resistivity and Conductivity
- V-I Characteristics (Linear and Non-linear)
- Flow of Electric Charges in a Metallic Conductor
Moving Charges and Magnetism
- Magnetic Force
- Sources and Fields of Magnetic Force
- Magnetic Field, Lorentz Force
- Magnetic Force on a Current-carrying Conductor
- Motion in a Magnetic Field
- Magnetic Field Due to a Current Element, Biot-Savart Law
- Magnetic Field on the Axis of a Circular Current Loop
- Ampere’s Circuital Law
- Solenoid and the Toroid - the Solenoid
- Force Between Two Parallel Currents, the Ampere
- Circular Current Loop as a Magnetic Dipole
- Torque on a Rectangular Current Loop in a Uniform Magnetic Field
- Moving Coil Galvanometer
- Oersted’s Experiment
- Solenoid and the Toroid - the Toroid
- Magnetic Diapole
- Torque on a Current Loop in Magnetic Field
- Force on a Current - Carrying Conductor in a Uniform Magnetic Field
- Force on a Moving Charge in Uniform Magnetic and Electric Fields
- Straight and Toroidal Solenoids (Only Qualitative Treatment)
- The Magnetic Dipole Moment of a Revolving Electron
- Velocity Selector
- Cyclotron
Electromagnetic Induction and Alternating Currents
Magnetism and Matter
- Introduction of Magnetism
- The Bar Magnet
- Magnetism and Gauss’s Law
- Magnetisation and Magnetic Intensity
- Magnetic Properties of Materials
- Permanent Magnet and Electromagnet
- Curie Law of Magnetism
- Hysteresis Loop
- The Earth’s Magnetism
- Torque on a Magnetic Dipole (Bar Magnet) in a Uniform Magnetic Field
- Dipole in a Uniform External Field
- Magnetic Field Intensity Due to a Magnetic Dipole (Bar Magnet) Perpendicular to Its Axis
- Magnetic Field Intensity Due to a Magnetic Dipole (Bar Magnet) Along Its Axis
- Magnetic Dipole Moment of a Revolving Electron
- Current Loop as a Magnetic Dipole and Its Magnetic Dipole Moment
- Magnetic Substances
Electromagnetic Waves
Optics
Electromagnetic Induction
- Electromagnetic Induction
- The Experiments of Faraday and Henry
- Magnetic Flux
- Faraday’s Law of Induction
- Lenz’s Law and Conservation of Energy
- Motional Electromotive Force (e.m.f.)
- Mutual Inductance
- Self Inductance
- A.C. Generator
- Energy Consideration: a Quantitative Study
- Eddy Currents
- Induced e.m.f. and Induced Current
Dual Nature of Radiation and Matter
Alternating Current
- Alternating Currents and Direct Currents
- Different Types of AC Circuits: AC Voltage Applied to a Resistor
- Representation of AC Current and Voltage by Rotating Vectors - Phasors
- Different Types of AC Circuits: AC Voltage Applied to an Inductor
- Different Types of AC Circuits: AC Voltage Applied to a Capacitor
- Different Types of AC Circuits: AC Voltage Applied to a Series LCR Circuit
- Power in AC Circuit: the Power Factor
- Forced Oscillations and Resonance
- Transformers
- LC Oscillations
- Reactance and Impedance
- Peak and Rms Value of Alternating Current Or Voltage
- Alternating Currents
Atoms and Nuclei
Electromagnetic Waves
- Elementary Facts About Electromagnetic Wave Uses
- Electromagnetic Spectrum
- Transverse Nature of Electromagnetic Waves
- Electromagnetic Waves
- Displacement Current
Ray Optics and Optical Instruments
- Reflection of Light by Spherical Mirrors
- Refraction
- Refraction at Spherical Surfaces and Lenses
- Refraction by a Lens
- Combination of Thin Lenses in Contact
- Refraction at Spherical Surfaces
- Power of a Lens
- Refraction Through a Prism
- Optical Instruments
- Optical Instruments: Simple Microscope
- Optical Instruments: Compound Microscope
- Optical Instruments: Telescope
- Optical Instruments: the Eye
- Snell’s Law
- Concave Mirror
- Rarer and Denser Medium
- Lens Maker's Formula
- Thin Lens Formula
- Concept of Lenses
- Some Natural Phenomena Due to Sunlight
- Dispersion by a Prism
- Magnification
- Total Internal Reflection
- Ray Optics - Mirror Formula
- Light Process and Photometry
Electronic Devices
Communication Systems
Wave Optics
- Introduction of Wave Optics
- Huygens' Principle
- Refraction of a Plane Wave
- Refraction at a Rarer Medium
- Reflection of a Plane Wave by a Plane Surface
- Coherent and Incoherent Addition of Waves
- Interference of Light Waves and Young’s Experiment
- Diffraction of Light
- The Single Slit
- Seeing the Single Slit Diffraction Pattern
- Refraction of Monochromatic Light
- Polarisation
- Law of Malus
- Principle of Superposition of Waves
- Corpuscular Theory
- Plane Polarised Light
- The Validity of Ray Optics
- The Doppler Effect
- Width of Central Maximum
- Resolving Power of Microscope and Astronomical Telescope
- Interference
- Proof of Laws of Reflection and Refraction Using Huygens' Principle
- Brewster's Law
- Fraunhofer Diffraction Due to a Single Slit
- Coherent and Incoherent Sources and Sustained Interference of Light
- Speed of Light
- Reflection and Refraction of Plane Wave at a Plane Surface Using Wave Fronts
Dual Nature of Radiation and Matter
- Dual Nature of Radiation
- Electron Emission
- Photoelectric Effect - Hertz’s Observations
- Photoelectric Effect - Hallwachs’ and Lenard’s Observations
- Experimental Study of Photoelectric Effect
- Photoelectric Effect and Wave Theory of Light
- Einstein’s Photoelectric Equation: Energy Quantum of Radiation
- Particle Nature of Light: The Photon
- Einstein’s Equation - Particle Nature of Light
- Davisson and Germer Experiment
- de-Broglie Relation
- Wave Nature of Matter
The Special Theory of Relativity
Atoms
- Introduction of Atoms
- Alpha-particle Scattering and Rutherford’s Nuclear Model of Atom
- Atomic Spectra
- Bohr’s Model for Hydrogen Atom
- Energy Levels
- The Line Spectra of the Hydrogen Atom
- De Broglie’s Explanation of Bohr’s Second Postulate of Quantisation
- Heisenberg and De Broglie Hypothesis
- Thompson Model
- Dalton's Atomic Theory
- Hydrogen Spectrum
Nuclei
- Atomic Masses and Composition of Nucleus
- Size of the Nucleus
- Mass - Energy
- Nuclear Binding Energy
- Nuclear Force
- Introduction of Radioactivity
- Alpha Decay
- Beta Decay
- Gamma Decay
- Introduction of Nuclear Energy
- Nuclear Fission
- Nuclear Fusion – Energy Generation in Stars
- Controlled Thermonuclear Fusion
- Nuclear Reactor
- Mass Defect and Binding Energy
- Atomic Mass, Mass - Energy Relation and Mass Defect
- Law of Radioactive Decay
Semiconductor Electronics - Materials, Devices and Simple Circuits
- Concept of Semiconductor Electronics: Materials, Devices and Simple Circuits
- Classification of Metals, Conductors and Semiconductors
- Energy Bands in Conductors, Semiconductors and Insulators
- Intrinsic Semiconductor
- Extrinsic Semiconductor
- p-n Junction
- Semiconductor Diode
- Application of Junction Diode as a Rectifier
- Integrated Circuits
- Feedback Amplifier and Transistor Oscillator
- Transistor as a Device
- Basic Transistor Circuit Configurations and Transistor Characteristics
- Transistor Action
- Transistor: Structure and Action
- Digital Electronics and Logic Gates
- Transistor as an Amplifier (Ce-configuration)
- Transistor and Characteristics of a Transistor
- Zener Diode as a Voltage Regulator
- Special Purpose P-n Junction Diodes
- Diode as a Rectifier
- Triode
Communication Systems
- Detection of Amplitude Modulated Wave
- Production of Amplitude Modulated Wave
- Basic Terminology Used in Electronic Communication Systems
- Sinusoidal Waves
- Modulation and Its Necessity
- Amplitude Modulation (AM)
- Need for Modulation and Demodulation
- Satellite Communication
- Propagation of Electromagnetic Waves
- Bandwidth of Transmission Medium
- Bandwidth of Signals
- Elements of a Communication System
The Special Theory of Relativity
- The Special Theory of Relativity
- The Principle of Relativity
- Maxwell'S Laws
- Kinematical Consequences
- Dynamics at Large Velocity
- Energy and Momentum
- The Ultimate Speed
- Twin Paradox
If you would like to contribute notes or other learning material, please submit them using the button below.
Video Tutorials
Shaalaa.com | Ray Optics and Optical Instruments Part 4
to track your progress