हिंदी

[0, 2π] पर x + sin 2x का उच्चतम और निम्नतम मान ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

[0, 2π] पर x + sin 2x का उच्चतम और निम्नतम मान ज्ञात कीजिए।

योग

उत्तर

मान लीजिए, f (x) = x + sin2x, 0 ≤ x ≤ 2π

⇒ f' (x) = 1 + 2cos 2x

⇒ क्रांतिक बिंदुओं के लिए, मान लीजिए f' (x) = 0

⇒ 1 + cos 2x = 0

⇒ `cos 2x = -1/2`

⇒ `cos 2x = -cos  pi/3`

(यदि 0< x < 2π, तो 0< 2x < 4π)

`⇒ cos 2x = cos (pi- pi/3), cos (pi + pi/2), cos (3pi - pi/3), cos (3pi + pi/3)`

⇒ `2x = (2pi)/3 , (4pi)/3, (8pi)/3, (10pi)/3`

⇒ `x = pi/3, (2pi)/3, (4pi)/3, (5pi)/3`

अतः, अधिकतम और न्यूनतम ज्ञात करने के लिए, हम f (x) का मूल्यांकन `0, 2pi , pi/3, (2pi)/3, (4pi)/3, (5pi)/3` पर करते हैं।

अब,  f(0) = 0 + sin 0 =

f (2π) = 2π + sin 4π = 2π + 0 = 2π

`f (pi/3) = pi/3 + sin  (2pi)/3 = pi/3 + sin (pi - pi/3)`

= `pi/3 + sin  pi/3 = pi/3 + sqrt3/2`

`f ((2pi)/3) = (2pi)/3 + sin  (4pi)/3 = (2pi)/3 + sin (pi + pi/3)`

= `(2pi)/3 - sin  pi/3 = (2pi)/3 - sqrt3/2`

`f((4pi)/3) = (4pi)/3 + sin  (8pi)/3 = (4pi)/3 + sin (2pi + (2pi)/3)`

= `(4pi)/3 + sin  (2pi)/3 = (4pi)/3 + sqrt3/2`

और `f ((5pi)/3) = (5pi)/3 + sin  (10pi)/3 = (5pi)/3 + sin (3pi + pi/3)`

= `(5pi)/3 -sin  pi/3 = (5pi)/3 - sqrt3/2`

इस प्रकार, x = 2π पर f (x) का अधिकतम मान = 2π और x = 0 पर f (x) का न्यूनतम मान = 0 है।

shaalaa.com
उच्चतम और निम्नतम - एक संवृत्त अंतराल में किसी फलन का उच्चतम और निम्नतम मान
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: अवकलज के अनुप्रयोग - प्रश्नावली 6.5 [पृष्ठ २५०]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
अध्याय 6 अवकलज के अनुप्रयोग
प्रश्नावली 6.5 | Q 12. | पृष्ठ २५०

संबंधित प्रश्न

`y = [x (x - 1) + 1]^(1/3), 0 le x le 1,` का उच्चतम मान है:


अंतराल [1, 3] में 2x3 - 24x + 107 का महत्तम मान ज्ञात कीजिए। इसी फलन का अंतराल [-3, -1] में भी महत्तम मान ज्ञात कीजिए।


यदि लाभ फलन p(x) = 41 - 72x - 18x2 से प्रदत्त है तो किसी कंपनी द्वारा अर्जित उच्चतम लाभ ज्ञात कीजिए।


निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:

f(x) = -(x - 1)2 + 10


निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:

g(x) = x3 + 1


निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:

g(x) = - |x + 1| + 3


निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:

h(x) = sin (2x) + 5


निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

g(x) = x3 - 3x


निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

f(x) `= x sqrt(1 - x), 0 < x < 1`


सिद्ध कीजिए कि निम्नलिखित फलन को उच्चतम या निम्नतम मान नहीं है:

f(x) = ex


सिद्ध कीजिए कि निम्नलिखित फलन को उच्चतम या निम्नतम मान नहीं है:

h(x) = x3 + x2 + x + 1


प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।

f(x) = x3, x ∈ [-2, 2]


प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।

f(x) = 4x `- 1/2 x^2, x in [-2, 9/2]`


प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।

f(x) = (x - 1)2 + 3, x `in` [-3, 1]


अंतराल [0, 3] पर 3x4 - 8x3 + 12x2 - 48x + 25 के उच्चतम मान और निम्नतम मान ज्ञात कीजिए। 


अंतराल [0, 2π] के किन बिंदुओं पर फलन sin 2 x अपना उच्चतम मान प्राप्त करता है।


सिद्ध कीजिए कि दिए हुए पृष्ठ और महत्त्म आयतन वाले लंब वृत्तीय शंकु का अर्ध शीर्ष कोण `sin^-1 (1/3)` होता है।


यदि दिया है कि अंतराल [0,2] में x = 1 पर फलन x4 - 62x2 + ax + 9 उच्चतम मान प्राप्त करता है तो a का मान ज्ञात कीजिए।


ऐसी दो धन संख्याएँ ज्ञात कीजिए जिनका योग 16 हो और जिनके घनों का योग निम्नतम हो।


45 cm × 24 cm की टिन की आयताकार चादर के चारों कोनों से समान भुजा का एक वर्गाकार निकालने के पश्चात् खुला हुआ एक संदूक बनाया जाता है। वर्गों की भुजा की माप ज्ञात कीजिये जिसके काटने पर बने संदूक का आयतन महत्तम होगा।


एक 28 cm लंबे तार को दो टुकड़ों में विभक्त किया जाना है। एक टुकड़े से वर्ग तथा दूसरे से वृत्त बनाया जाना है। दोनों टुकड़ों की लंबाई कितनी होनी चाहिए जिससे वर्ग एवं वृत्त का सम्मिलित क्षेत्रफल न्यूनतम हो?


सिद्ध कीजिए कि R त्रिज्या के गोले के अन्तर्गत विशालतम शंकु का आयतन गोले के आयतन का `8/27`  होता है।


सिद्ध कीजिए कि दी हुई तिर्यक ऊँचाई और महत्तम आयतन वाले शंकु का अर्थ शीर्ष कोण tan-1 `sqrt2`  होता है।


सिद्ध कीजिए कि एक r त्रिज्या के गोले के अन्तर्गत उच्चतम आयतन के लम्ब वृत्तीय शंकु की ऊँचाई  `(4r)/3` है।


सिद्ध कीजिए कि एक R त्रिज्या के गोले के अन्तर्गत अधिकतम आयतन के बेलन की ऊँचाई  `(2R)/sqrt3` है। अधिकतम आयतन भी ज्ञात कीजिए।


वक्र x = t2 + 3t – 8, y = 2t2 – 2t -5 के बिन्दु (2, -1) पर स्पर्श रेखा की प्रवणता है-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×