हिंदी

एक 28 cm लंबे तार को दो टुकड़ों में विभक्त किया जाना है। एक टुकड़े से वर्ग तथा दूसरे से वृत्त बनाया जाना है। दोनों टुकड़ों की लंबाई कितनी होनी चाहिए जिससे वर्ग एवं वृत्त का - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक 28 cm लंबे तार को दो टुकड़ों में विभक्त किया जाना है। एक टुकड़े से वर्ग तथा दूसरे से वृत्त बनाया जाना है। दोनों टुकड़ों की लंबाई कितनी होनी चाहिए जिससे वर्ग एवं वृत्त का सम्मिलित क्षेत्रफल न्यूनतम हो?

योग

उत्तर १

माना तार के एक भाग की लंबाई x सेमी है तब दूसरा भाग = (28 – x) सेमी होगा।

माना x लंबाई वाला भाग। त्रिज्या वाले वृत्त में बदला गया है।

⇒ 4πr3 - 200 = 0

⇒ r = `(50/pi)^(1//3)`

पुनः अवकलन करने पर

`("d"^2"S")/"dr"^2 = 400/"r"^3 + 4pi = + "ve"`     ...[∵ r > 0]

यदि S निम्नतम है। 

अब, r = `(50/pi)^(1//3)`

`=> "h" = 100/(pi"r"^2) = 100/pi (pi/50)^(2//3)`

`= 2(50/pi)(pi/50)^(2//3)`

`= 2(50/pi)^(1//3)`

`=> "r" = (50/pi)^(1//3)`

तथा h = `2(50/pi)^(1//3)`

अवकलन करने पर,

`"dA"/"dx" = 1/(4pi) * 2x + 1/16 * 2(28 - x)(x - 1)`

`= x/(2pi) - 1/8(28 -  x)`

`("d"^2"A")/"dx"^2 = 1/(2pi) + 1/8` = + ve

∴ A निम्नतम है।

न्यूनतम क्षेत्र के लिए, `"dA"/"dx" = 0`

`=> x/(2pi) = 1/8 (28 - x)`

⇒ 4x = 28π - πx

⇒ (4 + π)x = 28π

`=> x = (28 pi)/(4 + pi)`

∴ एक भाग; x = `(28 pi)/(4 + pi)`

दूसरा भाग = `(28 - (28 pi)/(4 + pi)) = 112/(4 + pi)` सेमी

shaalaa.com

उत्तर २

मान लीजिए एक टुकड़े की लंबाई x मीटर है और दूसरे टुकड़े की लंबाई (28 - x) मीटर है। मान लीजिए वृत्त के आकार में मोड़े गए टुकड़े की लंबाई x मीटर है और वर्ग के आकार में मोड़े गए दूसरे टुकड़े की लंबाई (28 - x) मीटर है।

परिधि = 2πr

⇒ 2πr = x

⇒ `r = x/(2pi)`

वृत्त का क्षेत्रफल = π (त्रिज्या)2

`= pi (x/(2pi))^2 = x^2/(4pi)`

वर्ग का परिमाप = 4 भुजा

⇒ 28 - x = 4 भुजा

⇒ भुजा= `(28 - x)/4`

⇒ वर्ग का क्षेत्रफल = (भुजा)2

`= ((28 - x)/4)^2`

`= (28 - x)^2/16`

मान लीजिए A दोनों आकृतियों के क्षेत्रफलों का योग है, तो

`A = x^2/(4pi) + (28 - x)^2/16`

x के संबंध में विभेद करने पर, हमें प्राप्त होता है।

`(dA)/dx = (2x)/(4pi) + (2 (28 - x)(-1))/16`

`= x/(2pi) - (28 - x)/8`

अधिकतम / न्यूनतम के लिए, `(dA)/dx = 0`

⇒ `x / (2pi) - (28 - x)/8 = 0`

⇒ ` (4x - 28pi + xpi)/(8pi) = 0`

⇒ `4x + xpi = 28 pi`

⇒ `x = (28pi)/ (4 + pi)`

⇒ `(d^2A)/dx^2 = 1/(2pi) - (-1)/8 = 1/ (2pi) + 1/8`

तथा `((d^2A)/dx^2)_(x = (28pi)/(4+pi))`

`= 1/(2pi) + 1/8 > 0`

अतः क्षेत्र A न्यूनतम है।

∴ तार को एक सिरे से `(28pi)/(4+pi)` मीटर की दूरी पर काटा जाना चाहिए।

इसलिए, दो टुकड़ों की लंबाई `(28pi)/(4 + pi)` मीटर और `(28 - (28pi)/(4+pi)) मीटर 112/(4 + pi)` मीटर है।

shaalaa.com
उच्चतम और निम्नतम - एक संवृत्त अंतराल में किसी फलन का उच्चतम और निम्नतम मान
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: अवकलज के अनुप्रयोग - प्रश्नावली 6.5 [पृष्ठ २५०]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
अध्याय 6 अवकलज के अनुप्रयोग
प्रश्नावली 6.5 | Q 22. | पृष्ठ २५०

संबंधित प्रश्न

`y = [x (x - 1) + 1]^(1/3), 0 le x le 1,` का उच्चतम मान है:


अंतराल [1, 3] में 2x3 - 24x + 107 का महत्तम मान ज्ञात कीजिए। इसी फलन का अंतराल [-3, -1] में भी महत्तम मान ज्ञात कीजिए।


यदि लाभ फलन p(x) = 41 - 72x - 18x2 से प्रदत्त है तो किसी कंपनी द्वारा अर्जित उच्चतम लाभ ज्ञात कीजिए।


निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:

h(x) = sin (2x) + 5


निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:

f(x) = |sin 4x + 3|


निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:

h(x) = x + 1, x ∈ (-1,1)


निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

g(x) = x3 - 3x


निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

f(x) = sin x - cos x, 0 < x < 2π


निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

f(x) = x3 - 6x2 + 9x + 15


निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

g(x) `= 1/(x^2 + 2)`


प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।

f(x) = x3, x ∈ [-2, 2]


प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।

f(x) = sin x + cos x, x `in [0, pi]`


प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।

f(x) = 4x `- 1/2 x^2, x in [-2, 9/2]`


अंतराल [0, 3] पर 3x4 - 8x3 + 12x2 - 48x + 25 के उच्चतम मान और निम्नतम मान ज्ञात कीजिए। 


अंतराल [0, 2π] के किन बिंदुओं पर फलन sin 2 x अपना उच्चतम मान प्राप्त करता है।


[0, 2π] पर x + sin 2x का उच्चतम और निम्नतम मान ज्ञात कीजिए।


ऐसी दो संख्याएँ ज्ञात कीजिए जिनका योग 24 है और जिनका गुणनफल उच्चतम हो।


ऐसी दो धन संख्याएँ ज्ञात कीजिए जिनका योग 16 हो और जिनके घनों का योग निम्नतम हो।


18 सेमी भुजा के टिन के किसी वर्गाकार टुकड़े से प्रत्येक कोने पर एक वर्ग काटकर तथा इस प्रकार बने टिन के फलकों को मोड़कर ढक्कन रहित एक संदूक बनाना है। काटे जाने वाले वर्ग की भुजा कितनी होगी जिससे संदूक का आयतन उच्चतम होगा?


100 सेमी3 आयतन वाले डिब्बे सभी बंद बेलनाकार (लंब वृत्तीय) डिब्बों में से न्यूनतम पृष्ठ क्षेत्रफल वाले डिब्बे की विमाएँ ज्ञात कीजिए।


सिद्ध कीजिए कि न्यूनतम पृष्ठ पर दिए आयतन के लंब वृत्तीय शंकु की ऊँचाई, आधार की त्रिज्या की `sqrt2` गुनी होती है।


सिद्ध कीजिए कि R त्रिज्या के गोले के अन्तर्गत विशालतम शंकु का आयतन गोले के आयतन का `8/27`  होता है।


सिद्ध कीजिए कि दी हुई तिर्यक ऊँचाई और महत्तम आयतन वाले शंकु का अर्थ शीर्ष कोण tan-1 `sqrt2`  होता है।


सिद्ध कीजिए कि एक R त्रिज्या के गोले के अन्तर्गत अधिकतम आयतन के बेलन की ऊँचाई  `(2R)/sqrt3` है। अधिकतम आयतन भी ज्ञात कीजिए।


सिद्ध कीजिए कि अर्द्धशीर्ष कोण और ऊँचाई h के लम्ब वृत्तीय शंकु के अन्तर्गत अधिकतम आयतन के बेलन की ऊँचाई शंकु के ऊँचाई की एक-तिहाई है और बेलन का अधिकतम आयतन `4/27` = πh3 tan2 α है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×