Advertisements
Advertisements
प्रश्न
18 सेमी भुजा के टिन के किसी वर्गाकार टुकड़े से प्रत्येक कोने पर एक वर्ग काटकर तथा इस प्रकार बने टिन के फलकों को मोड़कर ढक्कन रहित एक संदूक बनाना है। काटे जाने वाले वर्ग की भुजा कितनी होगी जिससे संदूक का आयतन उच्चतम होगा?
उत्तर १
माना वर्ग की प्रत्येक भुजा x सेमी काटी गई है।
∴ संदूक के लिए,
लंबाई = 18 - 2x
चौड़ाई = 18 - 2x
ऊँचाई = x
आयतन V = लंबाई × चौड़ाई × ऊँचाई
= x(18 - 2x) (18 - 2x)
= x(18 – 2x)x2 …(1)
दोनों पक्षों का x के सापेक्ष अवकलन करने पर,
`"dV"/"dx"` = x. 2 (18 - 2x) (-2) = (18 - 2x)2. 1
= (18 - 2x) (- 4x + 18 - 2x) = (18 - 2x) (18 - 6x) ...(2)
उच्चतम व निम्नतम मान के लिए, `"dV"/"dx" = 0`
⇒ (18 - 2x)(18 - 6x) = 0
⇒ 18 - 2x = 0
⇒ 2x = 18
⇒ x = 9
तथा 18 - 6x = 0
⇒ x `= 18/6 = 3`
`therefore` x = 3, 9
परंतु x = 9 सेमी संभव नहीं है।
समीकरण (2) का पुन: के सापेक्ष अवकलन करने पर,
`("d"^2"V")/"dx"^2` = (18 - 2x) (- 6) + (18 - 6x) (- 2)
x = 3 पर, `("d"^2"V")/"dx"^2` = (18 - 2 × 3) (- 6) + (18 - 6 × 3) (- 2)
= (18 - 6) (- 6) + (18 - 18) (-2)
= 12 × (-6) + 0
= - 72 < 0, - ve
`therefore` x = 3 पर आयतन अधिकतम होगा अर्थात वर्ग की भुजा प्रत्येक कोने से 3 सेमी काटी गई है तो आयतन उच्चतम होगा।
उत्तर २
मान लीजिए x सेमी उस वर्ग की प्रत्येक भुजा की लंबाई है जिसे 18 सेमी भुजा वाली वर्गाकार टिन शीट के प्रत्येक कोने से काटा जाना है।
मान लीजिए V फ्लैप को मोड़ने से बने खुले संदूक का आयतन है, तो,
V = x (18 - 2x) (18 - 2x) = 4x (9 - x)2
= 4 (x3 - 18x2 + 81x)
x के संबंध में विभेद करने पर, हमें प्राप्त होता है
`(dV)/dx = 4(3x^2 - 36x + 81) = 12 (x^2 - 12x + 27)`
अधिकतम/न्यूनतम मात्रा के लिए
`(dV)/dx = 0`
⇒ 12 (x2 - 12x + 27) = 0
⇒ 12 (x - 3) (x - 9) = 0
⇒ x = 3, 9 परंतु 0 < x < 9
⇒ x = 3
`((d^2V)/dx^2) = 12 (2x - 12) = 24 (x - 6)`
और `((d^2V)/dx^2)_(x=3) = 24 (3 - 6) = -72 <0`
⇒ V का मान x = 3 पर अधिकतम है
अतः, जब काटे जाने वाले वर्ग की भुजा 3 सेमी हो, तो संदूक का आयतन अधिकतम होगा।
APPEARS IN
संबंधित प्रश्न
अंतराल [1, 3] में 2x3 - 24x + 107 का महत्तम मान ज्ञात कीजिए। इसी फलन का अंतराल [-3, -1] में भी महत्तम मान ज्ञात कीजिए।
निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:
f(x) = (2x - 1)2 + 3
निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:
f(x) = 9x2 + 12x + 2
निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:
f(x) = |x + 2| - 1
निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:
h(x) = sin (2x) + 5
निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:
f(x) = |sin 4x + 3|
निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:
h(x) = x + 1, x ∈ (-1,1)
निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।
f(x) = x2
निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।
f(x) = sin x - cos x, 0 < x < 2π
निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।
g(x) = `x/2 + 2/x, x > 0`
निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।
f(x) `= x sqrt(1 - x), 0 < x < 1`
सिद्ध कीजिए कि निम्नलिखित फलन को उच्चतम या निम्नतम मान नहीं है:
g(x) = log x
प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।
f(x) = sin x + cos x, x `in [0, pi]`
प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।
f(x) = (x - 1)2 + 3, x `in` [-3, 1]
अंतराल [0, 2π] के किन बिंदुओं पर फलन sin 2 x अपना उच्चतम मान प्राप्त करता है।
फलन sin x + cos x का उच्चतम मान क्या है?
वक्र x2 = 2y पर (0, 5) से न्यूनतम दूरी पर स्थित बिंदु है:
x के सभी वास्तविक मानों के लिए `(1 - x + x^2)/(1 + x = x^2)` का न्यूनतम मान है:
ऐसी दो धन संख्याएँ x और y ज्ञात कीजिए जिनका योग 35 हो और गुणनफल x2y5 उच्चतम हो।
45 cm × 24 cm की टिन की आयताकार चादर के चारों कोनों से समान भुजा का एक वर्गाकार निकालने के पश्चात् खुला हुआ एक संदूक बनाया जाता है। वर्गों की भुजा की माप ज्ञात कीजिये जिसके काटने पर बने संदूक का आयतन महत्तम होगा।
सिद्ध कीजिए कि प्रदत्त पृष्ठ एवं महत्तम आयतन के बेलन की ऊँचाई आधार के व्यास के बराबर होती है।
100 सेमी3 आयतन वाले डिब्बे सभी बंद बेलनाकार (लंब वृत्तीय) डिब्बों में से न्यूनतम पृष्ठ क्षेत्रफल वाले डिब्बे की विमाएँ ज्ञात कीजिए।
सिद्ध कीजिए कि न्यूनतम पृष्ठ पर दिए आयतन के लंब वृत्तीय शंकु की ऊँचाई, आधार की त्रिज्या की `sqrt2` गुनी होती है।
सिद्ध कीजिए कि दी हुई तिर्यक ऊँचाई और महत्तम आयतन वाले शंकु का अर्थ शीर्ष कोण tan-1 `sqrt2` होता है।
त्रिभुज की भुजाओं से a और b दूरी पर त्रिभुज के कर्ण पर स्थित एक बिन्दु है। सिद्ध कीजिए कि कर्ण की न्यूनतम लंबाई (a2/3 + b2/3)3/2 है।
f (x) = cos2 x + sin x, x ϵ [0, π] द्वारा प्रदत्त फलन f का निरपेक्ष उच्चतम और निम्नतम मान ज्ञात कीजिए।
सिद्ध कीजिए कि एक r त्रिज्या के गोले के अन्तर्गत उच्चतम आयतन के लम्ब वृत्तीय शंकु की ऊँचाई `(4r)/3` है।