मराठी

18 सेमी भुजा के टिन के किसी वर्गाकार टुकड़े से प्रत्येक कोने पर एक वर्ग काटकर तथा इस प्रकार बने टिन के फलकों को मोड़कर ढक्कन रहित एक संदूक बनाना है। काटे जाने वाले वर्ग की भुजा कितनी - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

18 सेमी भुजा के टिन के किसी वर्गाकार टुकड़े से प्रत्येक कोने पर एक वर्ग काटकर तथा इस प्रकार बने टिन के फलकों को मोड़कर ढक्कन रहित एक संदूक बनाना है। काटे जाने वाले वर्ग की भुजा कितनी होगी जिससे संदूक का आयतन उच्चतम होगा?

बेरीज

उत्तर १

माना वर्ग की प्रत्येक भुजा x सेमी काटी गई है।

∴ संदूक के लिए,

लंबाई = 18 - 2x

चौड़ाई = 18 - 2x

ऊँचाई = x

आयतन V = लंबाई × चौड़ाई  × ऊँचाई

= x(18 - 2x) (18 - 2x)

= x(18 – 2x)x2      …(1)

दोनों पक्षों का x के सापेक्ष अवकलन करने पर,

`"dV"/"dx"` = x. 2 (18 - 2x) (-2) = (18 - 2x)2. 1

 = (18 - 2x) (- 4x + 18 - 2x) = (18 - 2x) (18 - 6x)        ...(2)

उच्चतम व निम्नतम मान के लिए, `"dV"/"dx" = 0`

⇒ (18 - 2x)(18 - 6x) = 0

⇒ 18 - 2x = 0

⇒ 2x = 18

⇒ x = 9

तथा 18 - 6x = 0

⇒ x `= 18/6 = 3`

`therefore` x = 3, 9

परंतु x = 9 सेमी संभव नहीं है।

समीकरण (2) का पुन: के सापेक्ष अवकलन करने पर,

`("d"^2"V")/"dx"^2` = (18 - 2x) (- 6) + (18 - 6x) (- 2)

x = 3 पर, `("d"^2"V")/"dx"^2` = (18 - 2 × 3)  (- 6) + (18 - 6 × 3) (- 2)

= (18 - 6) (- 6) + (18 - 18) (-2)

= 12 × (-6) + 0

= - 72 < 0, - ve

`therefore` x = 3 पर आयतन अधिकतम होगा अर्थात वर्ग की भुजा प्रत्येक कोने से 3 सेमी काटी गई है तो आयतन उच्चतम होगा।

shaalaa.com

उत्तर २

मान लीजिए x सेमी उस वर्ग की प्रत्येक भुजा की लंबाई है जिसे 18 सेमी भुजा वाली वर्गाकार टिन शीट के प्रत्येक कोने से काटा जाना है।

मान लीजिए V फ्लैप को मोड़ने से बने खुले संदूक का आयतन है, तो,

V = x (18  - 2x) (18 - 2x) = 4x (9 - x)2

= 4 (x3 - 18x2 + 81x)

x के संबंध में विभेद करने पर, हमें प्राप्त होता है

`(dV)/dx = 4(3x^2 - 36x + 81) = 12 (x^2 - 12x + 27)`

अधिकतम/न्यूनतम मात्रा के लिए

`(dV)/dx = 0`

⇒ 12 (x2 - 12x + 27) = 0

⇒ 12 (x - 3) (x - 9) = 0

⇒ x = 3, 9 परंतु 0 < x < 9

⇒ x = 3

`((d^2V)/dx^2) = 12 (2x - 12) = 24 (x - 6)`

और `((d^2V)/dx^2)_(x=3) = 24 (3 - 6) = -72 <0`

⇒ V का मान x = 3 पर अधिकतम है

अतः, जब काटे जाने वाले वर्ग की भुजा 3 सेमी हो, तो संदूक का आयतन अधिकतम होगा।

shaalaa.com
उच्चतम और निम्नतम - एक संवृत्त अंतराल में किसी फलन का उच्चतम और निम्नतम मान
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: अवकलज के अनुप्रयोग - प्रश्नावली 6.5 [पृष्ठ २५०]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
पाठ 6 अवकलज के अनुप्रयोग
प्रश्नावली 6.5 | Q 17. | पृष्ठ २५०

संबंधित प्रश्‍न

`y = [x (x - 1) + 1]^(1/3), 0 le x le 1,` का उच्चतम मान है:


निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:

f(x) = (2x - 1)2 + 3


निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:

g(x) = - |x + 1| + 3


निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:

h(x) = sin (2x) + 5


निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:

f(x) = |sin 4x + 3|


निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:

h(x) = x + 1, x ∈ (-1,1)


निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

f(x) = x2


निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

g(x) = x3 - 3x


निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

`h(x) = sin x + cos x, 0 < x < pi/2`


निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

g(x) = `x/2 + 2/x, x > 0`


निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

g(x) `= 1/(x^2 + 2)`


निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

f(x) `= x sqrt(1 - x), 0 < x < 1`


प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।

f(x) = 4x `- 1/2 x^2, x in [-2, 9/2]`


प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।

f(x) = (x - 1)2 + 3, x `in` [-3, 1]


अंतराल [0, 2π] के किन बिंदुओं पर फलन sin 2 x अपना उच्चतम मान प्राप्त करता है।


फलन sin x + cos x का उच्चतम मान क्या है?


सिद्ध कीजिए कि दिए हुए पृष्ठ और महत्त्म आयतन वाले लंब वृत्तीय शंकु का अर्ध शीर्ष कोण `sin^-1 (1/3)` होता है।


सिद्ध कीजिए कि एक दिए वृत्त के अंर्तगत सभी आयतों में वर्ग का क्षेत्रफल उच्चतम होता है।


सिद्ध कीजिए कि प्रदत्त पृष्ठ एवं महत्तम आयतन के बेलन की ऊँचाई आधार के व्यास के बराबर होती है।


सिद्ध कीजिए कि R त्रिज्या के गोले के अन्तर्गत विशालतम शंकु का आयतन गोले के आयतन का `8/27`  होता है।


सिद्ध कीजिए कि दी हुई तिर्यक ऊँचाई और महत्तम आयतन वाले शंकु का अर्थ शीर्ष कोण tan-1 `sqrt2`  होता है।


आयताकार आधार व आयताकार दीवारों की 2 m गहरी और 8 m3 आयतन की एक बिना ढक्कन की टंकी का निर्माण करना है। यदि टंकी के निर्माण में आधार के लिए Rs. 70/m2 और दीवारों पर Rs. 45/m2 व्यय आता है तो निम्नतम खर्च से बनी टंकी की लागत क्या है?


एक वृत्त और एक वर्ग के परिमापों का योग k है, जहाँ k एक अचर है। सिद्ध कीजिए कि उनके क्षेत्रफलों का योग निम्नतम है, जब वर्ग की भुजा वृत्त की त्रिज्या की दुगुनी है।


किसी आयत के ऊपर बने अर्धवृत्त के आकार वाली खिड़की है। खिड़की का सम्पूर्ण परिमाप 10 m है। पूर्णतया खुली खिड़की से अधिकतम प्रकाश आने के लिए खिड़की की विमाएँ ज्ञात कीजिए।


सिद्ध कीजिए कि एक r त्रिज्या के गोले के अन्तर्गत उच्चतम आयतन के लम्ब वृत्तीय शंकु की ऊँचाई  `(4r)/3` है।


सिद्ध कीजिए कि अर्द्धशीर्ष कोण और ऊँचाई h के लम्ब वृत्तीय शंकु के अन्तर्गत अधिकतम आयतन के बेलन की ऊँचाई शंकु के ऊँचाई की एक-तिहाई है और बेलन का अधिकतम आयतन `4/27` = πh3 tan2 α है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×