मराठी

किसी आयत के ऊपर बने अर्धवृत्त के आकार वाली खिड़की है। खिड़की का सम्पूर्ण परिमाप 10 m है। पूर्णतया खुली खिड़की से अधिकतम प्रकाश आने के लिए खिड़की की विमाएँ ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

किसी आयत के ऊपर बने अर्धवृत्त के आकार वाली खिड़की है। खिड़की का सम्पूर्ण परिमाप 10 m है। पूर्णतया खुली खिड़की से अधिकतम प्रकाश आने के लिए खिड़की की विमाएँ ज्ञात कीजिए।

बेरीज

उत्तर

मान लीजिए x और y आयत की लंबाई और चौड़ाई हैं।

अर्धवृत्त की त्रिज्या =x2

अर्द्ध-वृत्त की परिधि = πx2.

खिड़की की परिधि

AB + BC + AD + DC

x+2y+πx2=10

⇒ 2x + 4y + πx = 20

y=20-(2+π)x4

खिड़की का क्षेत्रफल = आयत का क्षेत्रफल + अर्धवृत्त का क्षेत्रफल।

A=xy+12π(x2)2

=x(20-(2+π)x4)+πx28.

A=20x-(2+π)x24+πx28.

dAdx=20-(2+π)2x4+2πx8

A के अधिकतम / न्यूनतम के लिए,

dAdx=0

20-(2+π)2x4+2πx8=0

⇒ 20 - (2 + π) 2x + πx = 0

⇒ 20 + x (π - 4 - 2π) = 0

⇒ 20 - x (4 + π) = 0

x=204+π

d2Adx2=-(2+π)24+2π8

=-4-2π+π4

=-4-π4

d2Adx2<0

इसलिए खिड़की अधिकतम प्रकाश को स्वीकार करती है जब x = लंबाई = 204+π

तथा चौड़ाई y=20-(2+π)204+π4

=80+20π-40-20π4(4+π)

=404(4+π)

=104+π.

shaalaa.com
उच्चतम और निम्नतम - एक संवृत्त अंतराल में किसी फलन का उच्चतम और निम्नतम मान
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: अवकलज के अनुप्रयोग - अध्याय 6 पर विविध प्रश्नावली [पृष्ठ २६०]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
पाठ 6 अवकलज के अनुप्रयोग
अध्याय 6 पर विविध प्रश्नावली | Q 11. | पृष्ठ २६०

संबंधित प्रश्‍न

अंतराल [1, 3] में 2x3 - 24x + 107 का महत्तम मान ज्ञात कीजिए। इसी फलन का अंतराल [-3, -1] में भी महत्तम मान ज्ञात कीजिए।


निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:

f(x) = 9x2 + 12x + 2


निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:

h(x) = sin (2x) + 5


निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

f(x) = x2


निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

h(x)=sinx+cosx,0<x<π2


निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

f(x) = x3 - 6x2 + 9x + 15


निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

f(x) =x1-x,0<x<1


सिद्ध कीजिए कि निम्नलिखित फलन को उच्चतम या निम्नतम मान नहीं है:

f(x) = ex


प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।

f(x) = x3, x ∈ [-2, 2]


प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।

f(x) = sin x + cos x, x [0,π]


प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।

f(x) = 4x -12x2,x[-2,92]


प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।

f(x) = (x - 1)2 + 3, x [-3, 1]


फलन sin x + cos x का उच्चतम मान क्या है?


x के सभी वास्तविक मानों के लिए 1-x+x21+x=x2 का न्यूनतम मान है:


[0, 2π] पर x + sin 2x का उच्चतम और निम्नतम मान ज्ञात कीजिए।


ऐसी दो संख्याएँ ज्ञात कीजिए जिनका योग 24 है और जिनका गुणनफल उच्चतम हो।


ऐसी दो धन संख्याएँ x और y ज्ञात कीजिए जिनका योग 35 हो और गुणनफल x2y5 उच्चतम हो।


100 सेमी3 आयतन वाले डिब्बे सभी बंद बेलनाकार (लंब वृत्तीय) डिब्बों में से न्यूनतम पृष्ठ क्षेत्रफल वाले डिब्बे की विमाएँ ज्ञात कीजिए।


सिद्ध कीजिए कि न्यूनतम पृष्ठ पर दिए आयतन के लंब वृत्तीय शंकु की ऊँचाई, आधार की त्रिज्या की 2 गुनी होती है।


सिद्ध कीजिए कि दी हुई तिर्यक ऊँचाई और महत्तम आयतन वाले शंकु का अर्थ शीर्ष कोण tan-1 2  होता है।


एक वृत्त और एक वर्ग के परिमापों का योग k है, जहाँ k एक अचर है। सिद्ध कीजिए कि उनके क्षेत्रफलों का योग निम्नतम है, जब वर्ग की भुजा वृत्त की त्रिज्या की दुगुनी है।


f (x) = cos2 x + sin x, x ϵ [0, π] द्वारा प्रदत्त फलन f का निरपेक्ष उच्चतम और निम्नतम मान ज्ञात कीजिए।


सिद्ध कीजिए कि अर्द्धशीर्ष कोण और ऊँचाई h के लम्ब वृत्तीय शंकु के अन्तर्गत अधिकतम आयतन के बेलन की ऊँचाई शंकु के ऊँचाई की एक-तिहाई है और बेलन का अधिकतम आयतन 427 = πh3 tan2 α है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.