Advertisements
Advertisements
प्रश्न
निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।
g(x) `= 1/(x^2 + 2)`
उत्तर
दिया गया है, `g (x) = 1/ (x^2 + 2)`
= `g' (x) = (-2x)/(x^2 + 2)^2`
क्रांतिक बिंदुओं के लिए, मान लीजिए g' (x) = 0
= `(-2x)/(x^2 + 2)^2 = 0`
x = 0 ....(∵ x2 + 2 ≠ 0)
`g'' (x) = (6x^2 - 4)/(x^2 + 2)^3; g'' (0) = (-4)/8 <0`
∴ x = 0 पर g का स्थानीय अधिकतम मान है और स्थानीय
अधिकतम मान है `g (0) = 1/ (0 + 2) = 1/2`
APPEARS IN
संबंधित प्रश्न
`y = [x (x - 1) + 1]^(1/3), 0 le x le 1,` का उच्चतम मान है:
निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:
f(x) = -(x - 1)2 + 10
निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:
f(x) = |x + 2| - 1
निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:
h(x) = sin (2x) + 5
निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:
h(x) = x + 1, x ∈ (-1,1)
निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।
f(x) = x3 - 6x2 + 9x + 15
सिद्ध कीजिए कि निम्नलिखित फलन को उच्चतम या निम्नतम मान नहीं है:
h(x) = x3 + x2 + x + 1
अंतराल [0, 2π] के किन बिंदुओं पर फलन sin 2 x अपना उच्चतम मान प्राप्त करता है।
फलन sin x + cos x का उच्चतम मान क्या है?
वक्र x2 = 2y पर (0, 5) से न्यूनतम दूरी पर स्थित बिंदु है:
x के सभी वास्तविक मानों के लिए `(1 - x + x^2)/(1 + x = x^2)` का न्यूनतम मान है:
यदि दिया है कि अंतराल [0,2] में x = 1 पर फलन x4 - 62x2 + ax + 9 उच्चतम मान प्राप्त करता है तो a का मान ज्ञात कीजिए।
[0, 2π] पर x + sin 2x का उच्चतम और निम्नतम मान ज्ञात कीजिए।
ऐसी दो धन संख्याएँ x और y ज्ञात कीजिए जिनका योग 35 हो और गुणनफल x2y5 उच्चतम हो।
18 सेमी भुजा के टिन के किसी वर्गाकार टुकड़े से प्रत्येक कोने पर एक वर्ग काटकर तथा इस प्रकार बने टिन के फलकों को मोड़कर ढक्कन रहित एक संदूक बनाना है। काटे जाने वाले वर्ग की भुजा कितनी होगी जिससे संदूक का आयतन उच्चतम होगा?
45 cm × 24 cm की टिन की आयताकार चादर के चारों कोनों से समान भुजा का एक वर्गाकार निकालने के पश्चात् खुला हुआ एक संदूक बनाया जाता है। वर्गों की भुजा की माप ज्ञात कीजिये जिसके काटने पर बने संदूक का आयतन महत्तम होगा।
सिद्ध कीजिए कि प्रदत्त पृष्ठ एवं महत्तम आयतन के बेलन की ऊँचाई आधार के व्यास के बराबर होती है।
100 सेमी3 आयतन वाले डिब्बे सभी बंद बेलनाकार (लंब वृत्तीय) डिब्बों में से न्यूनतम पृष्ठ क्षेत्रफल वाले डिब्बे की विमाएँ ज्ञात कीजिए।
एक 28 cm लंबे तार को दो टुकड़ों में विभक्त किया जाना है। एक टुकड़े से वर्ग तथा दूसरे से वृत्त बनाया जाना है। दोनों टुकड़ों की लंबाई कितनी होनी चाहिए जिससे वर्ग एवं वृत्त का सम्मिलित क्षेत्रफल न्यूनतम हो?
सिद्ध कीजिए कि न्यूनतम पृष्ठ पर दिए आयतन के लंब वृत्तीय शंकु की ऊँचाई, आधार की त्रिज्या की `sqrt2` गुनी होती है।
सिद्ध कीजिए कि दी हुई तिर्यक ऊँचाई और महत्तम आयतन वाले शंकु का अर्थ शीर्ष कोण tan-1 `sqrt2` होता है।
एक वृत्त और एक वर्ग के परिमापों का योग k है, जहाँ k एक अचर है। सिद्ध कीजिए कि उनके क्षेत्रफलों का योग निम्नतम है, जब वर्ग की भुजा वृत्त की त्रिज्या की दुगुनी है।
त्रिभुज की भुजाओं से a और b दूरी पर त्रिभुज के कर्ण पर स्थित एक बिन्दु है। सिद्ध कीजिए कि कर्ण की न्यूनतम लंबाई (a2/3 + b2/3)3/2 है।
f (x) = cos2 x + sin x, x ϵ [0, π] द्वारा प्रदत्त फलन f का निरपेक्ष उच्चतम और निम्नतम मान ज्ञात कीजिए।
सिद्ध कीजिए कि एक R त्रिज्या के गोले के अन्तर्गत अधिकतम आयतन के बेलन की ऊँचाई `(2R)/sqrt3` है। अधिकतम आयतन भी ज्ञात कीजिए।