मराठी

45 cm × 24 cm की टिन की आयताकार चादर के चारों कोनों से समान भुजा का एक वर्गाकार निकालने के पश्चात् खुला हुआ एक संदूक बनाया जाता है। वर्गों की भुजा की माप ज्ञात कीजिये - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

45 cm × 24 cm की टिन की आयताकार चादर के चारों कोनों से समान भुजा का एक वर्गाकार निकालने के पश्चात् खुला हुआ एक संदूक बनाया जाता है। वर्गों की भुजा की माप ज्ञात कीजिये जिसके काटने पर बने संदूक का आयतन महत्तम होगा।

बेरीज

उत्तर

माना अभीष्ट वर्ग की भुजा x है तब ।।

संदूक की लंबाई (l) = (45 - 2x)

तथा संदूक की चौड़ाई (b) = (24 - 2x)

संदूक की ऊँचाई (h) = x

∴ संदूक का आयतन, V = l × b × h

V = x(45 - 2x) · (24 - 2x)

= (4x3 - 138x2 + 1080x)           ...(1)

समीकरण (1) का x सापेक्ष अवकलन करने पर,

`(dV)/dx =` 12x2 - 276x + 1080         ...(2)

V के महत्तम मान के लिए, `(dV)/dx = 0`

या 12x2 - 276x + 1080 = 0  या x2 - 23x + 90 = 0

या x2 - 18x - 5x + 90 = 0   या x(x - 18) - 5 (x - 18) = 0

या (x - 18)(x - 5) = 0

`therefore` x = 5, 18

समीकरण (2) का x के सापेक्ष पुन: अवकलन करने पर, `(d^2V)/dx^2` = 24x - 276

x = 5 पर, `(d^2V)/dx^2` = 24 × 5 - 276 = (ऋणात्मक मान)

∴ x = 5 पर V का मान महत्तम होगा।

∴ वर्ग की भुजा 5 सेमी होगी।

shaalaa.com
उच्चतम और निम्नतम - एक संवृत्त अंतराल में किसी फलन का उच्चतम और निम्नतम मान
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: अवकलज के अनुप्रयोग - प्रश्नावली 6.5 [पृष्ठ २५०]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
पाठ 6 अवकलज के अनुप्रयोग
प्रश्नावली 6.5 | Q 18. | पृष्ठ २५०

संबंधित प्रश्‍न

अंतराल [1, 3] में 2x3 - 24x + 107 का महत्तम मान ज्ञात कीजिए। इसी फलन का अंतराल [-3, -1] में भी महत्तम मान ज्ञात कीजिए।


निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:

f(x) = -(x - 1)2 + 10


निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:

g(x) = x3 + 1


निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:

f(x) = |x + 2| - 1


निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:

h(x) = x + 1, x ∈ (-1,1)


निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

f(x) = x2


निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

f(x) = x3 - 6x2 + 9x + 15


निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

f(x) `= x sqrt(1 - x), 0 < x < 1`


सिद्ध कीजिए कि निम्नलिखित फलन को उच्चतम या निम्नतम मान नहीं है:

f(x) = ex


सिद्ध कीजिए कि निम्नलिखित फलन को उच्चतम या निम्नतम मान नहीं है:

g(x) = log x


प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।

f(x) = 4x `- 1/2 x^2, x in [-2, 9/2]`


अंतराल [0, 2π] के किन बिंदुओं पर फलन sin 2 x अपना उच्चतम मान प्राप्त करता है।


सिद्ध कीजिए कि दिए हुए पृष्ठ और महत्त्म आयतन वाले लंब वृत्तीय शंकु का अर्ध शीर्ष कोण `sin^-1 (1/3)` होता है।


वक्र x2 = 2y पर (0, 5) से न्यूनतम दूरी पर स्थित बिंदु है:


x के सभी वास्तविक मानों के लिए `(1 - x + x^2)/(1 + x = x^2)` का न्यूनतम मान है:


यदि दिया है कि अंतराल [0,2] में x = 1 पर फलन x4 - 62x2 + ax + 9 उच्चतम मान प्राप्त करता है तो a का मान ज्ञात कीजिए।


[0, 2π] पर x + sin 2x का उच्चतम और निम्नतम मान ज्ञात कीजिए।


ऐसी दो धन संख्याएँ x और y ज्ञात कीजिए जिनका योग 35 हो और गुणनफल x2y5 उच्चतम हो।


ऐसी दो धन संख्याएँ ज्ञात कीजिए जिनका योग 16 हो और जिनके घनों का योग निम्नतम हो।


सिद्ध कीजिए कि प्रदत्त पृष्ठ एवं महत्तम आयतन के बेलन की ऊँचाई आधार के व्यास के बराबर होती है।


सिद्ध कीजिए कि दी हुई तिर्यक ऊँचाई और महत्तम आयतन वाले शंकु का अर्थ शीर्ष कोण tan-1 `sqrt2`  होता है।


आयताकार आधार व आयताकार दीवारों की 2 m गहरी और 8 m3 आयतन की एक बिना ढक्कन की टंकी का निर्माण करना है। यदि टंकी के निर्माण में आधार के लिए Rs. 70/m2 और दीवारों पर Rs. 45/m2 व्यय आता है तो निम्नतम खर्च से बनी टंकी की लागत क्या है?


त्रिभुज की भुजाओं से a और b दूरी पर त्रिभुज के कर्ण पर स्थित एक बिन्दु है। सिद्ध कीजिए कि कर्ण की न्यूनतम लंबाई (a2/3 + b2/3)3/2 है।


सिद्ध कीजिए कि एक r त्रिज्या के गोले के अन्तर्गत उच्चतम आयतन के लम्ब वृत्तीय शंकु की ऊँचाई  `(4r)/3` है।


सिद्ध कीजिए कि एक R त्रिज्या के गोले के अन्तर्गत अधिकतम आयतन के बेलन की ऊँचाई  `(2R)/sqrt3` है। अधिकतम आयतन भी ज्ञात कीजिए।


सिद्ध कीजिए कि अर्द्धशीर्ष कोण और ऊँचाई h के लम्ब वृत्तीय शंकु के अन्तर्गत अधिकतम आयतन के बेलन की ऊँचाई शंकु के ऊँचाई की एक-तिहाई है और बेलन का अधिकतम आयतन `4/27` = πh3 tan2 α है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×