Advertisements
Advertisements
प्रश्न
5 सेमी बाजू असलेला समभुज ΔABC काढा. ΔABC ∼ ΔLMN. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 6:7 असल्यास ΔLMN काढा.
उत्तर
कच्ची आकृती
विश्लेषण:
∆ABC ∼ ∆LMN
∴ `"AB"/"LM" = "BC"/"MN" = "AC"/"LN"` ......[समरूप त्रिकोणांच्या संगत बाजू]
∴ `5/"LM" = 5/"MN" = 5/"LN" = 6/7` .....[पक्ष]
∴ `5/"LM" = 6/7`
∴ LM = `(5 xx 7)/6`
∴ LM = 5.8 सेमी (साधारणतः)
∴ LM = MN = LN = 5.8 सेमी (साधारणतः) ...........[समभुज त्रिकोण]
∆LMN | |
i. | 5.8 सेमी लांबीची रेख MN काढा. |
ii. | बिंदू M व N वरून 5.8 सेमी लांबीचा कंस काढा. |
iii. | यांच्या छेदनबिंदूला L नाव द्या. |
iv. | रेख LM आणि रेख LN जोडा. |
APPEARS IN
संबंधित प्रश्न
ΔPQR ~ ΔLTR, ΔPQR मध्ये PQ = 4.2 सेमी, QR = 5.4 सेमी, PR = 4.8 सेमी आणि `"PQ"/"LT"` = `3/4` तर ΔPQR व ΔLTR काढा.
ΔRST ~ ΔXYZ, ΔRST मध्ये RS = 4.5 सेमी, ∠RST = 40°, ST = 5.7 सेमी आणि `"RS"/"XY" = 3/5` तर ΔRST व ΔXYZ काढा.
ΔAMT ~ ΔAHE, ΔAMT मध्ये AM = 6.3 सेमी, ∠TAM = 50°, AT = 5.6 सेमी आणि `"AM"/"AH" = 7/5` तर ΔAHE काढा.
∠PQR हा 115° काढा. त्याचे दोन एकरूप कोनांत विभाजन करा.
ΔABC ∼ ΔLMN, ΔABC मध्ये, AB = 5.5 सेमी, BC = 6 सेमी, CA = 5.5 सेमी, MN = 4.8 सेमी, तर ΔABC व ΔLMN काढा.
ΔABC ~ ΔPBR, BC = 8 सेमी, AC = 10 सेमी , ∠B = 90°, `"BC"/"BR" = 5/4`, तर ΔPBR काढा.
ΔRST ∼ ΔUAY, ΔRST मध्ये, RS = 6 सेमी, ∠S = 50°, ST = 7.5 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 5.4 असल्यास ΔUAY काढा.
ΔABC मध्ये, BC = 6 सेमी, ∠B = 45°, ∠A = 100°. ΔABC ∼ ΔPBQ. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 7:4 असल्यास ΔABC व ΔPBQ काढा.
ΔPQR ∼ ΔAQB, ΔPQR मध्ये, PQ = 3 सेमी, ∠Q = 90°, QR = 4 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 7:5 असल्यास ΔAQB काढा.
ΔPQR मध्ये, ∠P = 40°, PQ ≅ PR, QR = 7 सेमी. ΔXYZ ∼ ΔPQR, XY:PQ = 3:2 असल्यास ΔXYZ काढा.