हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (मराठी माध्यम) १० वीं कक्षा

5 सेमी बाजू असलेला समभुज ΔABC काढा. ΔABC ∼ ΔLMN. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 6:7 असल्यास ΔLMN काढा. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

5 सेमी बाजू असलेला समभुज ΔABC काढा. ΔABC ∼ ΔLMN. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 6:7 असल्यास ΔLMN काढा.

योग

उत्तर

कच्ची आकृती

विश्लेषण: 

∆ABC ∼ ∆LMN

∴ `"AB"/"LM" = "BC"/"MN" = "AC"/"LN"`  ......[समरूप त्रिकोणांच्या संगत बाजू]

∴ `5/"LM" = 5/"MN" = 5/"LN" = 6/7`   .....[पक्ष]

∴ `5/"LM" = 6/7`

∴ LM = `(5 xx 7)/6`

∴ LM = 5.8 सेमी (साधारणतः)

∴ LM = MN = LN = 5.8 सेमी (साधारणतः) ...........[समभुज त्रिकोण]

  ∆LMN
i. 5.8 सेमी लांबीची रेख MN काढा.
ii. बिंदू M व N वरून 5.8 सेमी लांबीचा कंस काढा.
iii. यांच्या छेदनबिंदूला L नाव द्या.
iv. रेख LM आणि रेख LN जोडा.
shaalaa.com
समरूप त्रिकोणाची रचना
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: भौमितिक रचना - Q ३ (ब)

APPEARS IN

एससीईआरटी महाराष्ट्र Geometry (Mathematics 2) [Marathi] 10 Standard SSC
अध्याय 4 भौमितिक रचना
Q ३ (ब) | Q ६)

संबंधित प्रश्न

ΔPQR ~ ΔLTR, ΔPQR मध्ये PQ = 4.2 सेमी, QR = 5.4 सेमी, PR = 4.8 सेमी आणि `"PQ"/"LT"` = `3/4` तर ΔPQR व ΔLTR काढा.


ΔRST ~ ΔXYZ, ΔRST मध्ये RS = 4.5 सेमी, ∠RST = 40°, ST = 5.7 सेमी आणि `"RS"/"XY" = 3/5` तर ΔRST व ΔXYZ काढा.


ΔAMT ~ ΔAHE, ΔAMT मध्ये AM = 6.3 सेमी, ∠TAM = 50°, AT = 5.6 सेमी आणि `"AM"/"AH" = 7/5` तर ΔAHE काढा.


∠PQR हा 115° काढा. त्याचे दोन एकरूप कोनांत विभाजन करा. 


ΔABC ∼ ΔLMN, ΔABC मध्ये, AB = 5.5 सेमी, BC = 6 सेमी, CA = 5.5 सेमी, MN = 4.8 सेमी, तर ΔABC व ΔLMN काढा. 


ΔABC ~ ΔPBR, BC = 8 सेमी, AC = 10 सेमी , ∠B = 90°, `"BC"/"BR" = 5/4`, तर ΔPBR काढा.


ΔRST ∼ ΔUAY, ΔRST मध्ये, RS = 6 सेमी, ∠S = 50°, ST = 7.5 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 5.4 असल्यास ΔUAY काढा. 


ΔABC मध्ये, BC = 6 सेमी, ∠B = 45°, ∠A = 100°. ΔABC ∼ ΔPBQ. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 7:4 असल्यास ΔABC व ΔPBQ काढा. 


ΔPQR ∼ ΔAQB, ΔPQR मध्ये, PQ = 3 सेमी, ∠Q = 90°, QR = 4 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 7:5 असल्यास ΔAQB काढा. 


ΔPQR मध्ये, ∠P = 40°, PQ ≅ PR, QR = 7 सेमी. ΔXYZ ∼ ΔPQR, XY:PQ = 3:2 असल्यास ΔXYZ काढा. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×