Advertisements
Advertisements
Question
5 सेमी बाजू असलेला समभुज ΔABC काढा. ΔABC ∼ ΔLMN. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 6:7 असल्यास ΔLMN काढा.
Solution
कच्ची आकृती
विश्लेषण:
∆ABC ∼ ∆LMN
∴ `"AB"/"LM" = "BC"/"MN" = "AC"/"LN"` ......[समरूप त्रिकोणांच्या संगत बाजू]
∴ `5/"LM" = 5/"MN" = 5/"LN" = 6/7` .....[पक्ष]
∴ `5/"LM" = 6/7`
∴ LM = `(5 xx 7)/6`
∴ LM = 5.8 सेमी (साधारणतः)
∴ LM = MN = LN = 5.8 सेमी (साधारणतः) ...........[समभुज त्रिकोण]
∆LMN | |
i. | 5.8 सेमी लांबीची रेख MN काढा. |
ii. | बिंदू M व N वरून 5.8 सेमी लांबीचा कंस काढा. |
iii. | यांच्या छेदनबिंदूला L नाव द्या. |
iv. | रेख LM आणि रेख LN जोडा. |
APPEARS IN
RELATED QUESTIONS
ΔAMT ~ ΔAHE, ΔAMT मध्ये AM = 6.3 सेमी, ∠TAM = 50°, AT = 5.6 सेमी आणि `"AM"/"AH" = 7/5` तर ΔAHE काढा.
जर ΔABC ∼ ΔPQR, `"AB"/"PQ" = 7/5` तर ______
ΔPYQ असा काढा की, PY = 6.3 सेमी, YQ = 7.2 सेमी, PQ = 5.8 सेमी. ΔXYZ हा ΔPYQ शी समरूप त्रिकोण असा काढा की, `"YZ"/"YQ" = 6/5`.
पुढील उपप्रश्नासाठी चार पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक पर्याय निवडून त्यांचे वर्णाक्षर लिहा.
ΔLMN ∼ ΔHIJ व `"LM"/"HI" = 2/3`, तर ______
पुढील उपप्रश्नासाठी चार पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक पर्याय निवडून त्यांचे वर्णाक्षर लिहा.
ΔPQR ∼ ΔABC, `"PR"/"AC" = 5/7` तर ______
ΔABC ∼ ΔPBQ, ΔABC मध्ये , AB = 3 सेमी, ∠B = 90°, BC = 4 सेमी व त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 7:4 असल्यास ΔPBQ काढा.
ΔABC ∼ ΔPBQ, ΔABC मध्ये, AB = 4 सेमी, BC = 5 सेमी, AC = 6 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 2:3 असल्यास ΔPBQ काढा.
ΔABC ~ ΔPBR, BC = 8 सेमी, AC = 10 सेमी , ∠B = 90°, `"BC"/"BR" = 5/4`, तर ΔPBR काढा.
ΔRST ∼ ΔUAY, ΔRST मध्ये, RS = 6 सेमी, ∠S = 50°, ST = 7.5 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 5.4 असल्यास ΔUAY काढा.
एक समद्विभुज त्रिकोण असा काढा, की त्याचा पाया 5 सेमी व उंची 4 सेमी आहे. त्या त्रिकोणाला समरूप त्रिकोण असा काढा, की त्याच्या बाजू मूळ त्रिकोणाच्या संगत बाजूंच्या `2/3` पट आहेत.