हिंदी

65 व्यक्तियों के समूह में, 40 व्यक्ति क्रिकेट और 10 व्यक्ति क्रिकेट तथा टेनिस दोनों को पंसद करते हैं, तो कितने व्यक्ति केवल टेनिस को पंसद करते हैं किंतु क्रिकेट को नहीं? - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

65 व्यक्तियों के समूह में, 40 व्यक्ति क्रिकेट और 10 व्यक्ति क्रिकेट तथा टेनिस दोनों को पंसद करते हैं, तो कितने व्यक्ति केवल टेनिस को पंसद करते हैं किंतु क्रिकेट को नहीं? कितने व्यक्ति टेनिस को पंसद करते हैं?

योग

उत्तर

मान लीजिए C, क्रिकेट पंसद करने वाले लोगों का समुच्चय है और T टेनिस पंसद करने वालों का समुच्चय हो, तब
n(C ∪ T) = 65, n(C) = 40, n(C ∩ T) = 10
हम जानते हैं कि n(C ∪ T) = n(C) + n(T) – n(C ∩ T)
65 = 40 + n(T) – 10
= 30 + n(T)
n(T) = 65 – 30 = 35
केवल टेनिस पंसद करने वालो की संख्या = n(T) – n(C ∩ T)
= 35 – 10 = 25.
इस प्रकार टेनिस पंसद करने वालों की संख्या जो क्रिकेट पंसद नहीं करते = 25 अतः टेनिस पंसद करने वाले लोगों की संख्या = 35

shaalaa.com
दो समुच्चयों के सम्मिलन और सर्वनिष्ठ पर आधारित व्यावहारिक प्रश्न
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: समुच्चय - प्रश्नावली 1.6 [पृष्ठ २९]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
अध्याय 1 समुच्चय
प्रश्नावली 1.6 | Q 7. | पृष्ठ २९

संबंधित प्रश्न

यदि X और Y दो ऐसे समुच्चय हैं कि n(X) = 17, n(Y) = 23 तथा n(X ∪ Y) = 38, तो n(X ∩ Y) ज्ञात कीजिए।


यदि X और Y दो ऐसे समुच्चय हैं कि X ∪ Yमें 18, X में 8 और Y में 15 अवयव हों तो X ∩ Y में कितने अवयव होंगे?


400 व्यक्तियों के समूह में, 250 हिन्दी तथा 200 अंग्रेजी बोल सकते हैं। कितने व्यक्ति हिन्दी तथा अंग्रेजी दोनों बोल सकते हैं?


यदि S और T दो ऐसे समुच्चय हैं कि 5 में 21, T में 32 और S ∩ T में 11 अवयव हों तो S ∪ T में कितने अवयव होंगे?


यदि X और Y दो ऐसे समुच्चय हैं कि x में 40, X ∩ Y में 60 और X ∪ Y में 10 अवयव हों, तो Y में कितने अवयव होंगें?


एक कमेटी में, 50 व्यक्ति फ्रैंच 20 व्यक्ति स्पेनिश और 10 व्यक्ति स्पेनिश और फ्रैंच दोनों ही .भाषाओं को बोल सकते हैं। कितने व्यक्ति इन दोनों ही भाषाओं में से कम से कम एक भाषा बोल सकते हैं?


60 लोगों के सर्वेक्षण में पाया गया कि 25 लोग समाचार पत्र H, 26 लोग समाचार पत्र T, 26 लोग समाचार पत्र I, 9 लोग H तथा I दोनों, 11 लोग H तथा T दोनों, 8 लोग T तथा । दोनों और 3 लोग तीनों ही समाचार पत्र पढ़ते हैं, तो निम्नलिखित ज्ञात कीजिए:

  1. कम से कम एक समाचार पत्र पढ़ने वालों की संख्या।
  2. ठीक ठीक केवल एक समाचार पत्र पढ़ने वालों की संख्या।

गणित, भौतिक विज्ञान तथा रसायन विज्ञान में परीक्षा देने वाले 50 विद्यार्थियों में से प्रत्येक कम से कम एक विषय में उत्तीर्ण होता है। 37 गणित में, 24 भौतिक विज्ञान में तथा 43 रसायन विज्ञान में उत्तीर्ण होते हैं। यदि गणित और भौतिक विज्ञान में अधिकतम 19, गणित और रसायन विज्ञान में अधिकतम 29 तथा भौतिक विज्ञान और रसायन विज्ञान में अधिकतम 20 उत्तीर्ण होते हैं, तो तीनों विषयों में उत्तीर्ण होने वाले विद्यार्थियों की अधिकतम संभव संख्या कितनी है?


प्रत्येक समुच्चय Xr में 5 अवयव हैं तथा प्रत्येक समुच्चय Yr में 2 अवयव हैं और `""_(r = 1)""^(20)X_r = S = ""_(r = 1)""^(n)Y_r`. यदि S का प्रत्येक अवयव Xr के तथ्यतः (exactly) 10 समुच्चयों और Yr प्रकार के तथ्यतः 4 समुच्चयों में है, तो n का मान ______


60 विद्यार्थियों की एक कक्षा में, 25 विद्यार्थी क्रिकेट और 20 विद्यार्थी टेनिस खेलते हैं तथा 10 विद्यार्थी दोनों ही खेल खेलते हैं। उन विद्यार्थियों की संख्या ज्ञात कीजिए जो इन दोनों में से कोई भी खेल नहीं खेलते हैं।


किसी शहर के 10,000 परिवारों के बारे में ज्ञात होता है कि 40% समाचार पत्र A, 20% समाचार पत्र B, 10% समाचार पत्र C, 5% समाचार पत्र A और B, 3% समाचार पत्र B और C तथा 4% समाचार पत्र A और C खरीदते हैं। यदि 2% परिवार तीनों ही समाचार पत्र खरीदते हैं, तो उन परिवारों की संख्या ज्ञात कीजिए जो A, B तथा C में से कोई भी समाचार पत्र नहीं खरीदते हैं।


50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, केवल फ्रांसीसी पढ़ते हैं।


50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, केवल अंग्रेजी पढ़ते हैं।


50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, केवल संस्कृत पढ़ते हैं।


50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, अंग्रेजी और संस्कृत पढ़ते हैं परंतु, फ्रांसीसी नहीं पढ़ते हैं।


50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, फ्रांसीसी और अंग्रेजी पढ़ते हैं परंतु संस्कृत नहीं पढ़ते हैं।


60 विद्यार्थियों की एक कक्षा में 25 विद्यार्थी क्रिकेट, 20 विद्यार्थी टेनिस और 10 विद्यार्थी दोनों ही खेल खेलते हैं, तो दोनों में से कोई भी खेल नहीं खेलने वाले विद्यार्थियों की संख्या ______


यदि X = {8n − 7n − 1 ∣ n ∈ N} और Y = {49n − 49 ∣ n ∈ N}, तो ______


यदि समुच्चय A और B निम्नलिख़ित प्रकार से परिभाषित हैं, A = `{(x,y)∣y=1/x,0≠x∈R}` ​B = {(x; y) ∣ y = −x, x ∈ R}, तो ______


जब A = ϕ, तो P(A) में अवयवों की संख्या ______ है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×