हिंदी

A circular coil expands radially in a region of magnetic field and no electromotive force is produced in the coil. This can be because ______. the magnetic field is constant. the magnetic - Physics

Advertisements
Advertisements

प्रश्न

A circular coil expands radially in a region of magnetic field and no electromotive force is produced in the coil. This can be because ______.

  1. the magnetic field is constant.
  2. the magnetic field is in the same plane as the circular coil and it may or may not vary.
  3. the magnetic field has a perpendicular (to the plane of the coil) component whose magnitude is decreasing suitably.
  4. there is a constant magnetic field in the perpendicular (to the plane of the coil) direction.

विकल्प

  • a and b

  • b and c

  • c and d

  • a and d

MCQ
रिक्त स्थान भरें

उत्तर

b and c

Explanation:

As we know whenever the number of magnetic lines of force (magnetic flux) passing through a circuit changes an emf is produced in the circuit called induced emf. The induced emf persists only as long as there is a change or cutting of flux.

The induced emf is given by rate of change of magnetic flux linked with the circuit, i.e., `e = (-dphi)/(dt)`

According to the problem, there is no electromotive force produced in the coil. Then the various arrangement are to be thought of in such a way that the magnetic flux linked with the coil does not change even if the coil is placed and expanded in magnetic field.

When circular coil expands radially in a region of magnetic field such that the magnetic field is in the same plane as the circular coil or we can say that direction of magnetic field is perpendicular to the direction of area (increasing) so that their dot product is always zero and hence change in magnetic flux is also zero.

Or

The magnetic field has a perpendicular (to the plane of the coil) component whose magnitude is decreasing suitably in such a way that the dot product of magnetic field and surface area of plane of coil remain constant at every instant.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Electromagnetic Induction - MCQ I [पृष्ठ ३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 12
अध्याय 6 Electromagnetic Induction
MCQ I | Q 6.1 | पृष्ठ ३५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A conducting disc of radius r rotates with a small but constant angular velocity ω about its axis. A uniform magnetic field B exists parallel to the axis of rotation. Find the motional emf between the centre and the periphery of the disc.


Figure shows a straight, long wire carrying a current i and a rod of length l coplanar with the wire and perpendicular to it. The rod moves with a constant velocity v in a direction parallel to the wire. The distance of the wire from the centre of the rod is x. Find the motional emf induced in the rod.


Mechanical force per unit area of a charged conductor is ______


A conducting square loop of side l and resistance R moves in its plane with a uniform velocity v perpendicular to one of its side. A magnetic induction B constant in time and space, pointing perpendicular and into the plane of the loop exists everywhere. The current induced in the loop is ______.


A straight conductor of length 2 m moves in a uniform magnetic field of induction 2.5 x `10^-3` T with a velocity. of 4 m/s in a direction perpendicular to its length and also perpendicular to the field. The e.m.f. induced between the ends of the conductor is ______.


A rod of mass m and resistance R slides smoothly over two parallel perfectly conducting wires kept sloping at an angle θ with respect to the horizontal (Figure). The circuit is closed through a perfect conductor at the top. There is a constant magnetic field B along the vertical direction. If the rod is initially at rest, find the velocity of the rod as a function of time.


Find the current in the sliding rod AB (resistance = R) for the arrangement shown in figure. B is constant and is out of the paper. Parallel wires have no resistance. v is constant. Switch S is closed at time t = 0.


Find the current in the sliding rod AB (resistance = R) for the arrangement shown in figure. B is constant and is out of the paper. Parallel wires have no resistance. v is constant. Switch S is closed at time t = 0.


An aeroplane, with its wings spread 10 m, is flying at a speed of 180 km/h in a horizontal direction. The total intensity of earth's field at that part is 2.5 × 10-4 Wb/m2 and the angle of dip is 60°. The emf induced between the tips of the plane wings will be ______.


A simple pendulum with a bob of mass m and conducting wire of length L swings under gravity through an angle θ. The component of the earth's magnetic field in the direction perpendicular to the swing is B. Maximum emf induced across the pendulum is ______.

(g = acceleration due to gravity)

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×