हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Converging Lens of Focal Length 15 Cm and a Converging Mirror of Focal Length 10 Cm Are Placed 50 Cm Apart. If a Pin of Length 2.0 Cm is Placed 30 Cm - Physics

Advertisements
Advertisements

प्रश्न

A converging lens of focal length 15 cm and a converging mirror of focal length 10 cm are placed 50 cm apart. If a pin of length 2.0 cm is placed 30 cm from the lens farther away from the mirror, where will the final image form and what will be the size of the final image?

योग

उत्तर

Given,
Convex lens of focal length fl = 15 cm
Concave mirror of focal length fm = 10 cm
Distance between mirror and lens = 50 cm
Length of the pin (object length) h0 = 2.0 cm

As per the question
The pin (object) is placed at a distance of 30 cm from the lens on the principle axis.
Using lens formula,
\[\frac{1}{v} - \frac{1}{u} = \frac{1}{f_l}\]
\[ \Rightarrow v = \frac{u f_l}{u + f_l}\]
Since, u = −30 cm and fl = 15 cm
\[So, v = \frac{( - 30) \times 15}{( - 30 + 15)}=\frac{- 450}{- 15}=cm\]
From the figure it can be seen that image of the object (AB) is real and inverted (A'B') and it is of the same size as the object. This image (A'B') is at a distance of 20 cm from the concave mirror, which is formed at the centre of curvature of the mirror. Thus, mirror will form the image (A'B') at the same place as (A''B'') and will be of the same size. Now, due to the refraction from the lens, the final image (A''B'') will be formed at AB and will be of the same size as the object (AB).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Geometrical Optics - Exercise [पृष्ठ ४१६]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 18 Geometrical Optics
Exercise | Q 66 | पृष्ठ ४१६

संबंधित प्रश्न

What type of wavefront will emerge from a (i) point source, and (ii) distance light source?


The equation of refraction at a spherical surface is \[\frac{\mu_2}{\nu} - \frac{\mu_1}{\mu} = \frac{\mu_2 - \mu_1}{R}\]
Taking \[R = \infty\] show that this equation leads to the equation 
\[\frac{\text{ Real  depth }}{\text{ Apparent  depth }} = \frac{\mu_2}{\mu_1}\]
for refraction at a plane surface.


A point source of light is placed at a distance of 2 f from a converging lens of focal length f. The intensity on the other side of the lens is maximum at a distance


A convex lens has a focal length of 10 cm. Find the location and nature of the image if a point object is placed on the principal axis at a distance of (a) 9.8 cm, (b) 10.2 cm from the lens.


A particle executes a simple harmonic motion of amplitude 1.0 cm along the principal axis of a convex lens of focal length 12 cm. The mean position of oscillation is at 20 cm from the lens. Find the amplitude of oscillation of the image of the particle.


An extended object is placed at a distance of 5.0 cm from a convex lens of focal length 8.0 cm. (a) Draw the ray diagram (to the scale) to locate the image and from this, measure the distance of the image from the lens. (b) Find the position of the image from the lens formula and see how close the drawing is to the correct result.


A converging lens of focal length 15 cm and a converging mirror of focal length 10 cm are placed 50 cm apart with common principal axis. A point source is placed in between the lens and the mirror at a distance of 40 cm from the lens. Find the locations of the two images formed.


A 5 mm high pin is placed at a distance of 15 cm from a convex lens of focal length 10 cm. A second lens of focal length 5 cm is placed 40 cm from the first lens and 55 cm from the pin. Find (a) the position of the final image, (b) its nature and (c) its size.


A point object is placed at a distance of 15 cm from a convex lens. The image is formed on the other side at a distance of 30 cm from the lens. When a concave lens is placed in contact with the convex lens, the image shifts away further by 30 cm. Calculate the focal lengths of the two lenses.


Two convex lenses, each of focal length 10 cm, are placed at a separation of 15 cm with their principal axes coinciding. (a) Show that a light beam coming parallel to the principal axis diverges as it comes out of the lens system. (b) Find the location of the virtual image formed by the lens system of an object placed far away. (c) Find the focal length of the equivalent lens. (Note that the sign of the focal length is positive although the lens system actually diverges a parallel beam incident on it.)


A ball is kept at a height h above the surface of a heavy transparent sphere made of a material of refractive index μ. The radius of the sphere is R. At t = 0, the ball is dropped to fall normally on the sphere. Find the speed of the image formed as a function of time for \[t < \sqrt{\frac{2h}{g}}\] . Consider only the image by a single refraction.


Use the above relation to obtain the condition on the position of the object and the radius of curvature in terms of n1and n2 when the real image is formed.


Define the term 'focal length of a mirror'.


According to new Cartesian sign conventions, all the distances are measured from the ______.


A spherical surface of radius R separates two medium of refractive indices µ1 and µ2, as shown in figure. Where should an object be placed in the medium 1 so that a real image is formed in medium 2 at the same distance?


Define the critical angle for a given pair of media and total internal reflection. Obtain the relation between the critical angle and refractive index of the medium.


Obtain an expression for refraction at a single convex spherical surface, i.e., the relation between μ1 (rarer medium), μ2 (denser medium), object distance u, image distance v and the radius of curvature R.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×