Advertisements
Advertisements
प्रश्न
A converging lens of focal length 15 cm and a converging mirror of focal length 10 cm are placed 50 cm apart with common principal axis. A point source is placed in between the lens and the mirror at a distance of 40 cm from the lens. Find the locations of the two images formed.
उत्तर
Given:
Convex lens of focal length (fl) = 15 cm
Concave mirror of focal length (f2) = 10 cm
Distance between the lens and the mirror = 50 cm
Point source is placed at a distance of 40 cm from the lens.
It means the point source is at the focus of the mirror.
Thus, two images will be formed:
(a) One due to direct transmission of light through the lens.
(b) One due to reflection and then transmission of the rays through the lens.
Case 1:
(S') For the image by direct transmission, we have:
Object distance (u) = − 40 cm
fl = 15 cm
Using the lens formula, we get:
\[\frac{1}{v} - \frac{1}{u} = \frac{1}{f}\]
\[\Rightarrow\frac{1}{v}=\frac{1}{15}+\frac{1}{( - 40)}\]
\[=\frac{40 - 15}{40 \times 15}\]
\[\Rightarrow v=\frac{40 \times 15}{40 - 15}\]
Therefore, v is 24 cm to the left from the lens.
Case II:
(S') Since the object is placed at the focus of the mirror, the rays become parallel to the lens after reflection.
∴ Object distance (u) = ∞ ⇒ fl = 15 cm
\[\Rightarrow \frac{1}{v} - \frac{1}{u} = \frac{1}{15}\]
Thus, v is 15 cm to the left of the lens.
APPEARS IN
संबंधित प्रश्न
What type of wavefront will emerge from a (i) point source, and (ii) distance light source?
A point source of light is placed at a distance of 2 f from a converging lens of focal length f. The intensity on the other side of the lens is maximum at a distance
A slide projector has to project a 35 mm slide (35 mm × 23 mm) on a 2 m × 2 m screen at a distance of 10 m from the lens. What should be the focal length of the lens in the projector?
A particle executes a simple harmonic motion of amplitude 1.0 cm along the principal axis of a convex lens of focal length 12 cm. The mean position of oscillation is at 20 cm from the lens. Find the amplitude of oscillation of the image of the particle.
An extended object is placed at a distance of 5.0 cm from a convex lens of focal length 8.0 cm. (a) Draw the ray diagram (to the scale) to locate the image and from this, measure the distance of the image from the lens. (b) Find the position of the image from the lens formula and see how close the drawing is to the correct result.
A converging lens of focal length 15 cm and a converging mirror of focal length 10 cm are placed 50 cm apart. If a pin of length 2.0 cm is placed 30 cm from the lens farther away from the mirror, where will the final image form and what will be the size of the final image?
A point object is placed at a distance of 15 cm from a convex lens. The image is formed on the other side at a distance of 30 cm from the lens. When a concave lens is placed in contact with the convex lens, the image shifts away further by 30 cm. Calculate the focal lengths of the two lenses.
A ball is kept at a height h above the surface of a heavy transparent sphere made of a material of refractive index μ. The radius of the sphere is R. At t = 0, the ball is dropped to fall normally on the sphere. Find the speed of the image formed as a function of time for \[t < \sqrt{\frac{2h}{g}}\] . Consider only the image by a single refraction.
Use the above relation to obtain the condition on the position of the object and the radius of curvature in terms of n1and n2 when the real image is formed.
Define the term 'focal length of a mirror'.
According to new Cartesian sign conventions, all the distances are measured from the ______.
Region I and II are separated by a spherical surface of a radius of 25 cm. An object is kept in the region I at a distance of 40 cm from the surface. The distance of the image from the surface is ______.
Obtain an expression for refraction at a single convex spherical surface, i.e., the relation between μ1 (rarer medium), μ2 (denser medium), object distance u, image distance v and the radius of curvature R.
Assertion: If critical angle of glass-air pair `("μg" = 3/2)` is θ1 and that of water-air pair `("μw" = 4/3)` is θ2, then the critical angle for the water-glass pair will lie between θ1 and θ2.
Reason: A medium is optically denser if its refractive index is greater.