हिंदी

Define the Term 'Focal Length of a Mirror' - Physics

Advertisements
Advertisements

प्रश्न

Define the term 'focal length of a mirror'.

परिभाषा

उत्तर

The distance between the centre of a lens or curved mirror and its focus.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2019-2020 (February) Delhi (Set 2)

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

What type of wavefront will emerge from a (i) point source, and (ii) distance light source?


The equation of refraction at a spherical surface is \[\frac{\mu_2}{\nu} - \frac{\mu_1}{\mu} = \frac{\mu_2 - \mu_1}{R}\]
Taking \[R = \infty\] show that this equation leads to the equation 
\[\frac{\text{ Real  depth }}{\text{ Apparent  depth }} = \frac{\mu_2}{\mu_1}\]
for refraction at a plane surface.


A point source of light is placed at a distance of 2 f from a converging lens of focal length f. The intensity on the other side of the lens is maximum at a distance


A particle executes a simple harmonic motion of amplitude 1.0 cm along the principal axis of a convex lens of focal length 12 cm. The mean position of oscillation is at 20 cm from the lens. Find the amplitude of oscillation of the image of the particle.


An extended object is placed at a distance of 5.0 cm from a convex lens of focal length 8.0 cm. (a) Draw the ray diagram (to the scale) to locate the image and from this, measure the distance of the image from the lens. (b) Find the position of the image from the lens formula and see how close the drawing is to the correct result.


A 5 mm high pin is placed at a distance of 15 cm from a convex lens of focal length 10 cm. A second lens of focal length 5 cm is placed 40 cm from the first lens and 55 cm from the pin. Find (a) the position of the final image, (b) its nature and (c) its size.


Use the above relation to obtain the condition on the position of the object and the radius of curvature in terms of n1and n2 when the real image is formed.


Region I and II are separated by a spherical surface of a radius of 25 cm. An object is kept in the region I at a distance of 40 cm from the surface. The distance of the image from the surface is ______.

 


A spherical surface of radius R separates two medium of refractive indices µ1 and µ2, as shown in figure. Where should an object be placed in the medium 1 so that a real image is formed in medium 2 at the same distance?


A ray of light from a denser medium strikes a rarer medium at an angle of incidence i as shown in the figure. Refracted and reflected rays make an angle of 90° with each other. The angle of reflection and refraction are r and r'. The critical angle is ______.

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×