हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Hydrogen Atom Contains One Proton and One Electron. It May Be Assumed that the Electron Revolves in a Circle of Radius 0.53 Angstrom (1 Angstrom = 10−10 M and is Abbreviated as å ) - Physics

Advertisements
Advertisements

प्रश्न

A hydrogen atom contains one proton and one electron. It may be assumed that the electron revolves in a circle of radius 0.53 angstrom (1 angstrom = 10−10 m and is abbreviated as Å ) with the proton at the centre. The hydrogen atom is said to be in the ground state in this case. Find the magnitude of the electric force between the proton and the electron of a hydrogen atom in its ground state.

टिप्पणी लिखिए

उत्तर

Given:
Separation between the two charges, r = 0.53 Å = 0.53 × 10−10

\[q_1  =  q_2  = e\]

By Coulomb's Law, force,         

\[F = \frac{1}{4\pi \epsilon_0}\frac{q_1 q_2}{r^2}\]  

\[F = \frac{9 \times {10}^9 \times \left( 1 . 6 \times {10}^{- 19} \right)^2}{\left( 0 . 53 \times {10}^{- 10} \right)^2}\] 

\[     = 8 . 2 \times  {10}^{- 8}  \] N

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Electric Field and Potential - Exercises [पृष्ठ १२१]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 7 Electric Field and Potential
Exercises | Q 18 | पृष्ठ १२१

संबंधित प्रश्न

The electrostatic force on a small sphere of charge 0.4 μC due to another small sphere of charge − 0.8 μC in air is 0.2 N.

  1. What is the distance between the two spheres?
  2. What is the force on the second sphere due to the first?

Find the dimensional formula of ε0.


Four equal charges of 2.0 × 10−6 C each are fixed at the four corners of a square of side 5 cm. Find the Coulomb's force experienced by one of the charges due to the other three. 


Two identical pith balls are charged by rubbing one against the other. They are suspended from a horizontal rod through two strings of length 20 cm each, the separation between the suspension points being 5 cm. In equilibrium, the separation between the balls is 3 cm. Find the mass of each ball and the tension in the strings. The charge on each ball has a magnitude 2.0 × 10−8 C.


Two identical pith balls, each carrying a charge q, are suspended from a common point by two strings of equal length l. Find the mass of each ball if the angle between the strings is 2θ in equilibrium. 


A particle with a charge of 2.0 × 10−4 C is placed directly below and at a separation of 10 cm from the bob of a simple pendulum at rest. The mass of the bob is 100 g. What charge should the bob be given so that the string becomes loose? 


A particle A with a charge of 2.0 × 10−6 C and a mass of 100 g is placed at the bottom of a smooth inclined plane of inclination 30°. Where should another particle B, with the same charge and mass, be placed on the incline so that it may remain in equilibrium? 


A water particle of mass 10.0 mg and with a charge of 1.50 × 10−6 C stays suspended in a room. What is the magnitude of electric field in the room? What is its direction ? 


How much work has to be done in assembling three charged particles at the vertices of an equilateral triangle, as shown in the figure?


Two identical particles, each with a charge of 2.0 × 10−4 C and mass of 10 g, are kept at a separation of 10 cm and then released. What would be the speed of the particles when the separation becomes large?


Solve numerical example.

Three equal charges of 10×10-8 C respectively, each located at the corners of a right triangle whose sides are 15 cm, 20 cm, and 25cm respectively. Find the force exerted on the charge located at the 90° angle.


What are the differences between the Coulomb force and the gravitational force?


Write a short note on superposition principle.


Explain in detail Coulomb’s law and its various aspects.


Two-point charges of + 0.2 µµC and -0.2 µµC are separated by 1 o8 m. What is the value of the electric field at an axial point at a distance of 0.1 m from their mid-point?


Polarised dielectric is equivalent to ______.


Coulomb's law is given by F = k q1q2 rn where n is 


The capacity of an isolate conducting sphere of radius R is proportional to


Electric charge of any system is ______.


According to Coulomb's law, which is the correct relation for the following figure?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×