Advertisements
Advertisements
प्रश्न
A tuning fork of frequency 440 Hz is attached to a long string of linear mass density 0⋅01 kg m−1 kept under a tension of 49 N. The fork produces transverse waves of amplitude 0⋅50 mm on the string. (a) Find the wave speed and the wavelength of the waves. (b) Find the maximum speed and acceleration of a particle of the string. (c) At what average rate is the tuning fork transmitting energy to the string?
उत्तर
Given,
Frequency of the tuning fork, f = 440 Hz
Linear mass density, m = 0.01 kgm−1
Applied tension, T = 49 N
Amplitude of the transverse wave produce by the fork = 0.50 mm
Let the wavelength of the wave be \[\lambda\]
(a) The speed of the transverse wave is given by \[\nu = \sqrt{\left( \frac{T}{m} \right)}\]
\[\Rightarrow v = \sqrt{\frac{49}{0 . 01}} = 70 m/s\]
\[Also, \]
\[\nu = \frac{f}{\lambda}\]
\[ \therefore \lambda = \frac{f}{v} = \frac{70}{440} = 16 cm\]
(b) Maximum speed (vmax) and maximum acceleration (amax):
We have:
\[y = A \sin \left( \omega t - kx \right)\]
\[\therefore \nu = \frac{dy}{dt} = A\omega \cos \left( \omega t - kx \right)\]
\[Now, \]
\[ \nu_\max = \left( \frac{dy}{dt} \right) = A\omega\]
\[ = 0 . 50 \times {10}^{- 3} \times 2\pi \times 440\]
\[ = 1 . 3816 m/s . \]
\[And, \]
\[a = \frac{d^2 y}{d t^2}\]
\[ \Rightarrow a = - A \omega^2 \sin \left( \omega t - kx \right)\]
\[ a_\max = - A \omega^2 \]
\[ = 0 . 50 \times {10}^{- 3} \times 4 \pi^2 \left( 440 \right)^2 \]
\[= 3 . 8 km/ s^2\]
(c) Average rate (p) is given by
\[p = 2 \pi^2 \nu A^2 f^2 \]
\[ = 2 \times 10 \times 0 . 01 \times 70 \times \left( 0 . 5 \times {10}^{- 3} \right)^2 \times \left( 440 \right)^2 \]
\[ = 0 . 67 W\]
APPEARS IN
संबंधित प्रश्न
When longitudinal wave is incident at the boundary of denser medium, then............................
- compression reflects as a compression.
- compression reflects as a rarefaction.
- rarefaction reflects as a compression.
- longitudinal wave reflects as transverse wave.
A string of mass 2.50 kg is under a tension of 200 N. The length of the stretched string is 20.0 m. If the transverse jerk is struck at one end of the string, how long does the disturbance take to reach the other end?
Explain why (or how) Solids can support both longitudinal and transverse waves, but only longitudinal waves can propagate in gases
You are walking along a seashore and a mild wind is blowing. Is the motion of air a wave motion?
A mechanical wave propagates in a medium along the X-axis. The particles of the medium
(a) must move on the X-axis
(b) must move on the Y-axis
(c) may move on the X-axis
(d) may move on the Y-axis.
A transverse wave travels along the Z-axis. The particles of the medium must move
A wave moving in a gas
A particle on a stretched string supporting a travelling wave, takes 5⋅0 ms to move from its mean position to the extreme position. The distance between two consecutive particles, which are at their mean positions, is 2⋅0 cm. Find the frequency, the wavelength and the wave speed.
Figure shows a plot of the transverse displacements of the particles of a string at t = 0 through which a travelling wave is passing in the positive x-direction. The wave speed is 20 cm s−1. Find (a) the amplitude, (b) the wavelength, (c) the wave number and (d) the frequency of the wave.
A vertical rod is hit at one end. What kind of wave propagates in the rod if (a) the hit is made vertically (b) the hit is made horizontally?
Two wires of different densities but same area of cross section are soldered together at one end and are stretched to a tension T. The velocity of a transverse wave in the first wire is double of that in the second wire. Find the ratio of the density of the first wire to that of the second wire.
Consider the following statements about sound passing through a gas.
(A) The pressure of the gas at a point oscillates in time.
(B) The position of a small layer of the gas oscillates in time.
An organ pipe, open at both ends, contains
In the arrangement shown in figure , the string has a mass of 4⋅5 g. How much time will it take for a transverse disturbance produced at the floor to reach the pulley? Take g = 10 m s−2.
A heavy but uniform rope of length L is suspended from a ceiling. (a) Write the velocity of a transverse wave travelling on the string as a function of the distance from the lower end. (b) If the rope is given a sudden sideways jerk at the bottom, how long will it take for the pulse to reach the ceiling? (c) A particle is dropped from the ceiling at the instant the bottom end is given the jerk. Where will the particle meet the pulse?
A wire, fixed at both ends is seen to vibrate at a resonant frequency of 240 Hz and also at 320 Hz. (a) What could be the maximum value of the fundamental frequency? (b) If transverse waves can travel on this string at a speed of 40 m s−1, what is its length?
Three resonant frequencies of a string are 90, 150 and 210 Hz. (a) Find the highest possible fundamental frequency of vibration of this string. (b) Which harmonics of the fundamental are the given frequencies? (c) Which overtones are these frequencies? (d) If the length of the string is 80 cm, what would be the speed of a transverse wave on this string?
The equation of a standing wave, produced on a string fixed at both ends, is
\[y = \left( 0 \cdot 4 cm \right) \sin \left[ \left( 0 \cdot 314 {cm}^{- 1} \right) x \right] \cos \left[ \left( 600\pi s^{- 1} \right) t \right]\]
What could be the smallest length of the string?
The phenomenon of beats can take place