हिंदी

आकृति में, रेखाखंड DF त्रिभुज ABC की भुजा AC को बिंदु E पर इस प्रकार प्रतिच्छेद करता है कि E, भुजा AC का मध्य-बिंदु है और ∠AEF = ∠AFE है। सिद्ध कीजिए कि BDCD=BFCE है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

आकृति में, रेखाखंड DF त्रिभुज ABC की भुजा AC को बिंदु E पर इस प्रकार प्रतिच्छेद करता है कि E, भुजा AC का मध्य-बिंदु है और ∠AEF = ∠AFE है। सिद्ध कीजिए कि `(BD)/(CD) = (BF)/(CE)` है।

योग

उत्तर

दिया गया है ΔABC, E, CA का मध्य-बिंदु है और ∠AEF = ∠AFE है।

साबित करने के लिए: `("BD")/("CD") = ("BF")/("CE")` 

रचना: AB पर एक बिंदु G इस प्रकार लीजिए कि CG || EF

प्रमाण: चूँकि, E, CA का मध्य-बिंदु है।


∴ CE = AE   ...(i)

ΔACG में,

CG || EF और E, CA के मध्य-बिंदु हैं।

तो, CE = GF   ...(ii) [मध्य बिंदु प्रमेय द्वारा]

अब, ΔBCG और ΔBDF में,

CG || EF

∴ `("BC")/("CD") = ("BG")/("GF")` ...[मूल आनुपातिकता प्रमेय द्वारा]

⇒ `("BC")/("CD") = ("BF" - "GF")/("GF")`

⇒ `("BC")/("CD") = ("BF")/("GF") - 1`

⇒ `("BC")/("CD") + 1 = ("BF")/("CE")`  ...[समीकरण (ii) से]

⇒ `("BC" + "CD")/("CD") = ("BF")/("CE")`

⇒ `("BD")/("CD") = ("BF")/("CE")`

अतः सिद्ध हुआ।

shaalaa.com
पाइथागोरस प्रमेय
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: त्रिभुज - प्रश्नावली 6.4 [पृष्ठ ७८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 6 त्रिभुज
प्रश्नावली 6.4 | Q 16. | पृष्ठ ७८

संबंधित प्रश्न

आकृति में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा AC ⊥ BD है। दर्शाइए कि

 

AB2 = BC.BD


10 m लंबी एक सीढ़ी एक दीवार पर टिकाने पर भूमि से 8 m की ऊँचाई पर स्थित एक खिड़की तक पहुँचती है। दीवार के आधार से सीढ़ी के निचले सिरे की दूरी ज्ञात कीजिए।


एक हवाई जहाज एक हवाई अड्डे से उत्तर की ओर 1000 km/hr की चाल से उड़ता है। इसी समय एक अन्य हवाई जहाज उसी हवाई अड्डे से पश्चिम की ओर 1200 km/hr की चाल से उड़ता है। `1 1/2` घंटे के बाद दोनों हवाई जहाजों के बीच की दूरी कितनी होगी?


एक त्रिभुज ABC जिसका कोण C समकोण है, की भुजाओं CA और CB पर क्रमशः बिंदु D और E स्थित हैं। सिद्ध कीजिए कि AE2 + BD2 = AB2 + DE2 है।


क्या भुजाओं 25 cm, 5 cm और 24 cm वाला त्रिभुज एक समकोण त्रिभुज है? अपने उत्तर के लिए कारण दीजिए।


भुजा 8 cm वाले एक समबाहु त्रिभुज का शीर्षलंब ज्ञात कीजिए।


18 m ऊँचे एक ध्वज स्तंभ की छाया की लंबाई 9.6 m है। इस स्तंभ के ऊपरी सिरे की छाया के दूरस्थ सिरे से दूरी ज्ञात कीजिए।


किसी चतुर्भुज ABCD में, ∠A + ∠D = 90° है। सिद्ध कीजिए कि AC2 + BD2 = AD2 + BC2 है।

[संकेत : AB और DC को E पर मिलने के लिए बढ़ाइए]।


सिद्ध कीजिए कि एक समकोण त्रिभुज के कर्ण पर खींचे गए अर्धवृत्त का क्षेत्रफल अन्य दो भुजाओं पर खींचे गए अर्धवृत्तों के क्षेत्रफलों के योग के बराबर होता है।


सिद्ध कीजिए कि एक समकोण त्रिभुज के कर्ण पर खींचे गए समबाहु त्रिभुज का क्षेत्रफल अन्य दो भुजाओं पर खींचे गए समबाहु त्रिभुजों के क्षेत्रफलों के योग के बराबर होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×