Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि एक समकोण त्रिभुज के कर्ण पर खींचे गए समबाहु त्रिभुज का क्षेत्रफल अन्य दो भुजाओं पर खींचे गए समबाहु त्रिभुजों के क्षेत्रफलों के योग के बराबर होता है।
उत्तर
माना एक समकोण त्रिभुज BAC है जिसमें ∠A समकोण है और AC = y, AB = x है।
ΔABC की तीन भुजाओं पर तीन समबाहु त्रिभुज ΔAEC, ΔAFB और ΔCBD खींचे गए हैं।
पुनः माना कि AC, AS और BC पर बने त्रिभुजों का क्षेत्रफल क्रमशः A1, A2 और A3 है।
साबित करने के लिए: A3 = A1 + A2
प्रमाण: ΔCAB में,
पाइथागोरस प्रमेय द्वारा,
BC2 = AC2 + AB2
⇒ BC2 = y2 + x2
⇒ BC = `sqrt(y^2 + x^2)`
हम जानते हैं कि,
एक समबाहु त्रिभुज का क्षेत्रफल = `sqrt(3)/4` (भुजा)2
∴ समबाहु ΔAEC का क्षेत्रफल,
A1 = `sqrt(3)/4 ("AC")^2`
⇒ A1 = `sqrt(3)/4 y^2` ...(i)
और समबाहु ΔAFB का क्षेत्रफल,
A2 = `sqrt(3)/4 ("AB")^2`
= `(sqrt(3)x^2)/4` ...(ii)
और समबाहु ΔCBD का क्षेत्रफल,
A3 = `sqrt(3)/4 ("CB")^2`
= `sqrt(3)/4 (y^2 + x^2)`
= `sqrt(3)/4 y^2 + sqrt(3)/4 x^2`
= A1 + A2 ...[समीकरण (i) और (ii) से]
⇒ A3 = A1 + A2
अतः सिद्ध हुआ।
APPEARS IN
संबंधित प्रश्न
कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धारित कीजिए कि इनमें से कौन-कौन से त्रिभुज समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लंबाई भी लिखिए।
7 cm, 24 cm, 25 cm
आकृति में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा AC ⊥ BD है। दर्शाइए कि
AC2 = BC.DC
सिद्ध कीजिए कि एक समचतुर्भुज की भुजाओं के वर्गों का योग उसके विकर्णों के वर्गों के योग के बराबर होता है।
18 m ऊंचे एक ऊर्ध्वाधर खंभे के ऊपरी सिरे से एक तार का एक सिरा जुड़ा हुआ है तथा तार का दूसरा सिरा एक खूँटे से जुड़ा हुआ है। खंभे के आधार से खूँटे को कितनी दूरी पर गाड़ा जाए कि तार तना रहे जबकि तार की लंबाई 24 m है।
एक त्रिभुज ABC जिसका कोण C समकोण है, की भुजाओं CA और CB पर क्रमशः बिंदु D और E स्थित हैं। सिद्ध कीजिए कि AE2 + BD2 = AB2 + DE2 है।
भुजा 8 cm वाले एक समबाहु त्रिभुज का शीर्षलंब ज्ञात कीजिए।
5 m लंबी एक सीढ़ी एक ऊर्ध्वाधर दीवार के सहारे इस प्रकार टिकी हुई है कि उसका ऊपरी सिरा दीवार पर 4 m ऊँचे बिंदु तक पहुँचता है। यदि सीढ़ी के निचले सिरे को दीवार की ओर 1.6 m खिसकाया जाए, तो वह दूरी ज्ञात कीजिए जो सीढ़ी का ऊपरी सिरा ऊपर की ओर दीवार पर सरक जाएगा।
एक समलंब ABCD, जिसमें AB || DC है, के विकर्णों AC और BD का प्रतिच्छेद बिंदु O है। O से होकर एक रेखाखंड PQ भुजा AB के समांतर खींचा गया है, जो AD को P और BC को Q पर मिलता है। सिद्ध कीजिए कि PO = QO है।
आकृति में, रेखाखंड DF त्रिभुज ABC की भुजा AC को बिंदु E पर इस प्रकार प्रतिच्छेद करता है कि E, भुजा AC का मध्य-बिंदु है और ∠AEF = ∠AFE है। सिद्ध कीजिए कि `(BD)/(CD) = (BF)/(CE)` है।
सिद्ध कीजिए कि एक समकोण त्रिभुज के कर्ण पर खींचे गए अर्धवृत्त का क्षेत्रफल अन्य दो भुजाओं पर खींचे गए अर्धवृत्तों के क्षेत्रफलों के योग के बराबर होता है।