Advertisements
Advertisements
प्रश्न
एक समलंब ABCD, जिसमें AB || DC है, के विकर्णों AC और BD का प्रतिच्छेद बिंदु O है। O से होकर एक रेखाखंड PQ भुजा AB के समांतर खींचा गया है, जो AD को P और BC को Q पर मिलता है। सिद्ध कीजिए कि PO = QO है।
उत्तर
दिया गया है ABCD एक समलंब है।
विकर्ण AC और BD O पर प्रतिच्छेद करते हैं।
PQ || AB || DC
सिद्ध करना है: PO = QO
प्रमाण: ∆ABD और ∆POD में,
PO || AB ...[∵ PQ || AB]
∠D = ∠D ...[उभयनिष्ठ कोण]
∠ABD = ∠POD ...[संगत कोण]
∴ ∆ABD ~ ∆POD ...[AAA समानता मानदंड द्वारा]
फिर, `("OP")/("AB") = ("PD")/("AD")` ...(i)
∆ABC और ∆OQC में,
OQ || AB ...[∵ OQ || AB]
∠C = ∠C ...[उभयनिष्ठ कोण]
∠BAC = ∠QOC ...[संगत कोण]
∴ ∆ABC ~ ∆OQC ...[AAA समानता मानदंड द्वारा]
फिर, `("OQ")/("AB") = ("QC")/("BC")` ...(ii)
अब, In ∆ADC,
OP || DC
∴ `("AP")/("PD") = ("OA")/("OC")` [मूल आनुपातिकता प्रमेय द्वारा] ...(iii)
∆ABC में,
OQ || AB
∴ `("BQ")/("QC") = ("OA")/("OC")` [मूल आनुपातिकता प्रमेय द्वारा] ...(iv)
समीकरण (iii) और (iv) से, हम पाते हैं।
`("AP")/("PD") = ("BQ")/("QC")`
दोनों ओर 1 जोड़ने पर, हमें प्राप्त होता है।
`("AP")/("PD") + 1 = ("BQ")/("QC") + 1`
⇒ `("AP" + "PD")/("PD") = ("BQ" + "QC")/("QC")`
⇒ `("AD")/("PD") = ("BC")/("QC")`
⇒ `("PD")/("AD") = ("QC")/("BC")`
⇒ `("OP")/("AB") = ("OQ")/("BC")` ...[समीकरण (i) और (ii) से]
⇒ `("OP")/("AB") = ("OQ")/("AB")` ...[समीकरण (ii) से]
⇒ OP = OQ
अतः सिद्ध हुआ।
APPEARS IN
संबंधित प्रश्न
कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धारित कीजिए कि इनमें से कौन-कौन से त्रिभुज समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लंबाई भी लिखिए।
7 cm, 24 cm, 25 cm
कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धारित कीजिए कि इनमें से कौन-कौन से त्रिभुज समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लंबाई भी लिखिए।
3 cm, 8 cm, 6 cm
ABC एक समद्विबाहु त्रिभुज है जिसका कोण C समकोण है। सिद्ध कीजिए कि AB2 = 2AC2 है।
10 m लंबी एक सीढ़ी एक दीवार पर टिकाने पर भूमि से 8 m की ऊँचाई पर स्थित एक खिड़की तक पहुँचती है। दीवार के आधार से सीढ़ी के निचले सिरे की दूरी ज्ञात कीजिए।
एक हवाई जहाज एक हवाई अड्डे से उत्तर की ओर 1000 km/hr की चाल से उड़ता है। इसी समय एक अन्य हवाई जहाज उसी हवाई अड्डे से पश्चिम की ओर 1200 km/hr की चाल से उड़ता है। `1 1/2` घंटे के बाद दोनों हवाई जहाजों के बीच की दूरी कितनी होगी?
किसी समबाहु त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि BD = `1/3` BC है। सिद्ध कीजिए कि 9AD2 = 7AB2 है।
आकृति में ABC एक त्रिभुज है जिसमें ∠ABC < 90° हैं तथा AD ⊥ BC है। सिद्ध कीजिए कि AC2 = AB2 + BC2 – 2BC.BD है।
18 m ऊँचे एक ध्वज स्तंभ की छाया की लंबाई 9.6 m है। इस स्तंभ के ऊपरी सिरे की छाया के दूरस्थ सिरे से दूरी ज्ञात कीजिए।
∆PQR में, PD ⊥ QR इस प्रकार है कि D भुजा QR पर स्थित है। यदि PQ = a, PR = b, QD = c और DR = d है, तो सिद्ध कीजिए कि (a + b)(a – b) = (c + d)(c – d) है।
आकृति में, रेखाखंड DF त्रिभुज ABC की भुजा AC को बिंदु E पर इस प्रकार प्रतिच्छेद करता है कि E, भुजा AC का मध्य-बिंदु है और ∠AEF = ∠AFE है। सिद्ध कीजिए कि `(BD)/(CD) = (BF)/(CE)` है।