English

एक समलंब ABCD, जिसमें AB || DC है, के विकर्णों AC और BD का प्रतिच्छेद बिंदु O है। O से होकर एक रेखाखंड PQ भुजा AB के समांतर खींचा गया है, जो AD को P और BC को Q पर मिलता है। सिद्ध कीजिए कि PO = QO है। - Mathematics (गणित)

Advertisements
Advertisements

Question

एक समलंब ABCD, जिसमें AB || DC है, के विकर्णों AC और BD का प्रतिच्छेद बिंदु O है। O से होकर एक रेखाखंड PQ भुजा AB के समांतर खींचा गया है, जो AD को P और BC को Q पर मिलता है। सिद्ध कीजिए कि PO = QO है।

Sum

Solution

दिया गया है ABCD एक समलंब है।

विकर्ण AC और BD O पर प्रतिच्छेद करते हैं।

PQ || AB || DC

सिद्ध करना है: PO = QO

प्रमाण: ∆ABD और ∆POD में,

PO || AB ...[∵ PQ || AB]

∠D = ∠D   ...[उभयनिष्ठ कोण]

∠ABD = ∠POD  ...[संगत कोण]

∴ ∆ABD ~ ∆POD  ...[AAA समानता मानदंड द्वारा]

फिर, `("OP")/("AB") = ("PD")/("AD")`  ...(i)

∆ABC और ∆OQC में,

OQ || AB  ...[∵ OQ || AB]

∠C = ∠C  ...[उभयनिष्ठ कोण]

∠BAC = ∠QOC  ...[संगत कोण]

∴ ∆ABC ~ ∆OQC  ...[AAA समानता मानदंड द्वारा]

फिर, `("OQ")/("AB") = ("QC")/("BC")`  ...(ii)

अब, In ∆ADC,

OP || DC

∴ `("AP")/("PD") = ("OA")/("OC")` [मूल आनुपातिकता प्रमेय द्वारा]  ...(iii)

∆ABC में,

OQ || AB

∴ `("BQ")/("QC") = ("OA")/("OC")` [मूल आनुपातिकता प्रमेय द्वारा] ...(iv)

समीकरण (iii) और (iv) से, हम पाते हैं।

`("AP")/("PD") = ("BQ")/("QC")`

दोनों ओर 1 जोड़ने पर, हमें प्राप्त होता है।

`("AP")/("PD") + 1 = ("BQ")/("QC") + 1`

⇒ `("AP" + "PD")/("PD") = ("BQ" + "QC")/("QC")`

⇒ `("AD")/("PD") = ("BC")/("QC")`

⇒ `("PD")/("AD") = ("QC")/("BC")`

⇒ `("OP")/("AB") = ("OQ")/("BC")`  ...[समीकरण (i) और (ii) से]

⇒ `("OP")/("AB") = ("OQ")/("AB")`  ...[समीकरण (ii) से]

⇒ OP = OQ

अतः सिद्ध हुआ।

shaalaa.com
पाइथागोरस प्रमेय
  Is there an error in this question or solution?
Chapter 6: त्रिभुज - प्रश्नावली 6.4 [Page 78]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 6 त्रिभुज
प्रश्नावली 6.4 | Q 15. | Page 78

RELATED QUESTIONS

कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धारित कीजिए कि इनमें से कौन-कौन से त्रिभुज समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लंबाई भी लिखिए।

3 cm, 8 cm, 6 cm


आकृति में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा AC ⊥ BD है। दर्शाइए कि

 

AD2 = BD.CD


सिद्ध कीजिए कि एक समचतुर्भुज की भुजाओं के वर्गों का योग उसके विकर्णों के वर्गों के योग के बराबर होता है।


दो खंभे जिनकी ऊँचाइयाँ 6 m और 11 m हैं तथा ये समतल भूमि पर खड़े हैं। यदि इनके पाद बिंदुओं के बीच की दूरी 12 m है तो इनके ऊपरी सिरों के बीच की दूरी ज्ञात कीजिए।


आकृति में ABC एक त्रिभुज है जिसमें ∠ABC > 90° हैं तथा AD ⊥ CB है। सिद्ध कीजिए कि AC2 = AB2 + BC2 + 2 BC.BD है।

 


आकृति में ABC एक त्रिभुज है जिसमें ∠ABC < 90° हैं तथा AD ⊥ BC है। सिद्ध कीजिए कि AC2 = AB2 + BC2 – 2BC.BD है।

 


आकृति में AD त्रिभुज ABC की एक माध्यिका है तथा AM ⊥ BC है। सिद्ध कीजिए कि

(i) AC2 = AD2 + BC.DM + `("BC"/2)^2`

(ii) AB2 = AD2 – BC.DM + `("BC"/2)^2`

(ii) AC2 + AB2 = 2AD2 + `1/2` BC2


क्या भुजाओं 25 cm, 5 cm और 24 cm वाला त्रिभुज एक समकोण त्रिभुज है? अपने उत्तर के लिए कारण दीजिए।


10 m लंबी एक सीढ़ी, जो एक उर्ध्वाधर दीवार के सहारे टिकी हुई है, के निचले सिरे की दीवार के आधार से दूरी 6 m है। दीवार पर उस बिंदु की ऊँचाई ज्ञात कीजिए, जहाँ तक सीढ़ी का ऊपरी सिरा पहुँचता है।


शहर A से शहर B तक जाने के लिए एक मार्ग शहर C से होकर इस प्रकार जाता है कि AC ⊥ CB है, AC = 2x km और CB = 2(x + 7) km है। दोनों शहरों A और B को सीधा जोड़ने के लिए, एक 26 km लंबे राजमार्ग बनाने की एक योजना है। ज्ञात कीजिए कि राजमार्ग बन जाने के बाद, शहर A से शहर B तक जाने में कितनी दूरी कम चलनी पड़ेगी। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×