English

आकृति में AD त्रिभुज ABC की एक माध्यिका है तथा AM ⊥ BC है। सिद्ध कीजिए कि AC2 = AD2 + BC.DM + BC(BC2)2 - Mathematics (गणित)

Advertisements
Advertisements

Question

आकृति में AD त्रिभुज ABC की एक माध्यिका है तथा AM ⊥ BC है। सिद्ध कीजिए कि

(i) AC2 = AD2 + BC.DM + `("BC"/2)^2`

(ii) AB2 = AD2 – BC.DM + `("BC"/2)^2`

(ii) AC2 + AB2 = 2AD2 + `1/2` BC2

Theorem

Solution

(i) ∵ समकोण ∆AMD में, ∠AMD समकोण है

⇒ AM2 + MD2 = AD2 …(1) [पाइथागोरस प्रमेय से]

∵ समकोण ∆AMC में, ∠AMC समकोण है

⇒ AC2 = AM2 + MC2 [पाइथागोरस प्रमेय से]

⇒ AC2 = AM2 + (MD + DC)2

⇒ AC2 = AM2 + MD2 + DC2 + 2MD.DC

⇒ AC2 = AMD + MD2 + `("BC"/2)^2` + BC.DM …(2)
[DC = `"BC"/2` , BC = 2 DC]

⇒ AC2 = AD2 + `("BC"/2)^2` + BC.DM [समीकरण (1) और (2)]

⇒ AC2 = AD2 + BC.DM + `("BC"/2)^2`

इति सिद्धम्

(ii) ∵ समकोण ∆AMD में, ∠ADM समकोण है

⇒ AM2 + MD2 = AD2 …(1)[पाइथागोरस प्रमेय से]

∵ समकोण ∆AMB में ∠AMB समकोण है

⇒ AB2 = AM2 + BM2 [पाइथागोरस प्रमेय से]

⇒ AB2 = AM2 + (BD – MD)2

⇒ AB2 = AM2 + BD2 + MD2 – 2BD.MD

⇒ AB2 = AM2 + MD2 – 2BD.DM + BD2

⇒ AB2 = AM2 + MD2 – BC.DM + `("BC"/2)^2` ….(2)[2BD = BC ⇒ BD = `"BC"/2`]

⇒ AB2 = AD2 – BC.DM + `("BC"/2)^2`

इति सिद्धम्

(iii) अधिककोण ∆ADC में,

चूँकि AC2 = AD2 + BC.DM + `("BC"/2)^2` …..(1)
[भाग (i) में सिद्ध कर चुके हैं।]

एवं न्यूनकोण त्रिभुज ADB में,

चूँकि AB2 = AD2 – BC.DM + `("BC"/2)^2` …(2)
[भाग (ii) में सिद्ध कर चुके हैं।

⇒ AC2 + AB2 = 2AD2 + 2`("BC"/2)^2` [समीकरण (1) एवं (2) से]

⇒ AC2 + AB2 = 2AD2 + 2`"BC"^2/4`

⇒ AC2 + AB2 = 2AD2 + `1/2` BC2

इति सिद्धम्

shaalaa.com
पाइथागोरस प्रमेय
  Is there an error in this question or solution?
Chapter 6: त्रिभुज - अभ्यास 6.6 (ऐच्छिक)* [Page 167]

APPEARS IN

NCERT Mathematics [Hindi] Class 10
Chapter 6 त्रिभुज
अभ्यास 6.6 (ऐच्छिक)* | Q 5. | Page 167

RELATED QUESTIONS

आकृति में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा AC ⊥ BD है। दर्शाइए कि

 

AB2 = BC.BD


आकृति में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा AC ⊥ BD है। दर्शाइए कि

 

AD2 = BD.CD


ABC एक समद्विबाहु त्रिभुज है जिसका कोण C समकोण है। सिद्ध कीजिए कि AB2 = 2AC2 है।


एक समबाहु त्रिभुज ABC की भुजा 2a है। उसके प्रत्येक शीर्षलंब की लंबाई ज्ञात कीजिए।


किसी समबाहु त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि BD = `1/3` BC है। सिद्ध कीजिए कि 9AD2 = 7AB2 है।


किसी समबाहु त्रिभुज में, सिद्ध कीजिए कि उसकी एक भुजा के वर्ग का तिगुना उसके एक शीर्षलंब के वर्ग के चार गुने के बराबर होता है।


यदि ∆PQR की एक भुजा PQ पर S एक ऐसा बिंदु है कि PS = QS = RS है, तो ______।


5 m लंबी एक सीढ़ी एक ऊर्ध्वाधर दीवार के सहारे इस प्रकार टिकी हुई है कि उसका ऊपरी सिरा दीवार पर 4 m ऊँचे बिंदु तक पहुँचता है। यदि सीढ़ी के निचले सिरे को दीवार की ओर 1.6 m खिसकाया जाए, तो वह दूरी ज्ञात कीजिए जो सीढ़ी का ऊपरी सिरा ऊपर की ओर दीवार पर सरक जाएगा।


एक समलंब ABCD, जिसमें AB || DC है, के विकर्णों AC और BD का प्रतिच्छेद बिंदु O है। O से होकर एक रेखाखंड PQ भुजा AB के समांतर खींचा गया है, जो AD को P और BC को Q पर मिलता है। सिद्ध कीजिए कि PO = QO है।


सिद्ध कीजिए कि एक समकोण त्रिभुज के कर्ण पर खींचे गए समबाहु त्रिभुज का क्षेत्रफल अन्य दो भुजाओं पर खींचे गए समबाहु त्रिभुजों के क्षेत्रफलों के योग के बराबर होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×