हिंदी

किसी समबाहु त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि BD = 13 BC है। सिद्ध कीजिए कि 9AD2 = 7AB2 है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

किसी समबाहु त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि BD = `1/3` BC है। सिद्ध कीजिए कि 9AD2 = 7AB2 है।

प्रमेय

उत्तर

दिया है: ∆ABC एक समबाहु त्रिभुज जिसकी भुजा BC पर बिन्दु D इस प्रकार स्थित है कि BD = `1/3` BC

यहाँ AB = BC = CA ….(1)

एवं BD = `1/3` BC …(2)

रचना: A से AE ⊥ BC खींचिए।

चूँकि BE = EC = `1/2` BC = `1/2` AB …(3) [∵ BC = AB]

[∵ समबाहु त्रिभुज का शीर्ष लम्ब आधार को समाद्विभाजित करता है।]

⇒ DE = BE – BD = `"BC"/2 − "BC"/3` [समीकरण (3) एवं (2) से]

DE = `(3"BC" − 2"BC")/6 = "BC"/6 = "AB"/6` …..(4) [∵ BC = AB]

∵ समकोण ∆AEB में, ∠AEB समकोण है।

⇒ AE2 = AB2 – BE2 ….(5)

∵ समकोण ∆AED में, ∠AED समकोण है

⇒ AE2 = AD2 – DE2 …(6)

⇒ AB2 – BE2 = AD2 – DE2 …..(7) [समीकरण (5) एवं (6) से]

⇒ `"AB"^2 - ("AB"/2)^2 = "AD"^2 - ("AB"/6)^2`

⇒ `"AB"^2 - "AB"^2/4 = "AD"^2 - "AB"^2/36` [समीकरण (3), (4) एवं (7) से]

⇒ 36AB2 – 9AB2 = 36AD2 – AB2

⇒ 36AD2 = 36AB2 + AB2 – 9AB2 = 28AB2

⇒ 9AD2 = 7AB2

इति सिद्धम्

shaalaa.com
पाइथागोरस प्रमेय
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: त्रिभुज - प्रश्नावली 6.5 [पृष्ठ १६६]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
अध्याय 6 त्रिभुज
प्रश्नावली 6.5 | Q 15. | पृष्ठ १६६

संबंधित प्रश्न

कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धारित कीजिए कि इनमें से कौन-कौन से त्रिभुज समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लंबाई भी लिखिए।

7 cm, 24 cm, 25 cm


कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धारित कीजिए कि इनमें से कौन-कौन से त्रिभुज समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लंबाई भी लिखिए।

3 cm, 8 cm, 6 cm


आकृति में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा AC ⊥ BD है। दर्शाइए कि

 

AB2 = BC.BD


10 m लंबी एक सीढ़ी एक दीवार पर टिकाने पर भूमि से 8 m की ऊँचाई पर स्थित एक खिड़की तक पहुँचती है। दीवार के आधार से सीढ़ी के निचले सिरे की दूरी ज्ञात कीजिए।


एक त्रिभुज ABC जिसका कोण C समकोण है, की भुजाओं CA और CB पर क्रमशः बिंदु D और E स्थित हैं। सिद्ध कीजिए कि AE2 + BD2 = AB2 + DE2 है।


किसी समबाहु त्रिभुज में, सिद्ध कीजिए कि उसकी एक भुजा के वर्ग का तिगुना उसके एक शीर्षलंब के वर्ग के चार गुने के बराबर होता है।


सही उत्तर चुनकर उसका औचित्य दीजिए: ∆ABC में, AB = `6sqrt3` cm, AC = 12 cm और BC = 6 cm है। कोण B है: ______


एक समलंब ABCD, जिसमें AB || DC है, के विकर्णों AC और BD का प्रतिच्छेद बिंदु O है। O से होकर एक रेखाखंड PQ भुजा AB के समांतर खींचा गया है, जो AD को P और BC को Q पर मिलता है। सिद्ध कीजिए कि PO = QO है।


आकृति में, रेखाखंड DF त्रिभुज ABC की भुजा AC को बिंदु E पर इस प्रकार प्रतिच्छेद करता है कि E, भुजा AC का मध्य-बिंदु है और ∠AEF = ∠AFE है। सिद्ध कीजिए कि `(BD)/(CD) = (BF)/(CE)` है।


सिद्ध कीजिए कि एक समकोण त्रिभुज के कर्ण पर खींचे गए समबाहु त्रिभुज का क्षेत्रफल अन्य दो भुजाओं पर खींचे गए समबाहु त्रिभुजों के क्षेत्रफलों के योग के बराबर होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×