मराठी

किसी समबाहु त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि BD = 13 BC है। सिद्ध कीजिए कि 9AD2 = 7AB2 है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

किसी समबाहु त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि BD = `1/3` BC है। सिद्ध कीजिए कि 9AD2 = 7AB2 है।

सिद्धांत

उत्तर

दिया है: ∆ABC एक समबाहु त्रिभुज जिसकी भुजा BC पर बिन्दु D इस प्रकार स्थित है कि BD = `1/3` BC

यहाँ AB = BC = CA ….(1)

एवं BD = `1/3` BC …(2)

रचना: A से AE ⊥ BC खींचिए।

चूँकि BE = EC = `1/2` BC = `1/2` AB …(3) [∵ BC = AB]

[∵ समबाहु त्रिभुज का शीर्ष लम्ब आधार को समाद्विभाजित करता है।]

⇒ DE = BE – BD = `"BC"/2 − "BC"/3` [समीकरण (3) एवं (2) से]

DE = `(3"BC" − 2"BC")/6 = "BC"/6 = "AB"/6` …..(4) [∵ BC = AB]

∵ समकोण ∆AEB में, ∠AEB समकोण है।

⇒ AE2 = AB2 – BE2 ….(5)

∵ समकोण ∆AED में, ∠AED समकोण है

⇒ AE2 = AD2 – DE2 …(6)

⇒ AB2 – BE2 = AD2 – DE2 …..(7) [समीकरण (5) एवं (6) से]

⇒ `"AB"^2 - ("AB"/2)^2 = "AD"^2 - ("AB"/6)^2`

⇒ `"AB"^2 - "AB"^2/4 = "AD"^2 - "AB"^2/36` [समीकरण (3), (4) एवं (7) से]

⇒ 36AB2 – 9AB2 = 36AD2 – AB2

⇒ 36AD2 = 36AB2 + AB2 – 9AB2 = 28AB2

⇒ 9AD2 = 7AB2

इति सिद्धम्

shaalaa.com
पाइथागोरस प्रमेय
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: त्रिभुज - प्रश्नावली 6.5 [पृष्ठ १६६]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
पाठ 6 त्रिभुज
प्रश्नावली 6.5 | Q 15. | पृष्ठ १६६

संबंधित प्रश्‍न

कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धारित कीजिए कि इनमें से कौन-कौन से त्रिभुज समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लंबाई भी लिखिए।

3 cm, 8 cm, 6 cm


कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धारित कीजिए कि इनमें से कौन-कौन से त्रिभुज समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लंबाई भी लिखिए।

13 cm, 12 cm, 5 cm


आकृति में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा AC ⊥ BD है। दर्शाइए कि

 

AB2 = BC.BD


आकृति में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा AC ⊥ BD है। दर्शाइए कि

 

AC2 = BC.DC


एक हवाई जहाज एक हवाई अड्डे से उत्तर की ओर 1000 km/hr की चाल से उड़ता है। इसी समय एक अन्य हवाई जहाज उसी हवाई अड्डे से पश्चिम की ओर 1200 km/hr की चाल से उड़ता है। `1 1/2` घंटे के बाद दोनों हवाई जहाजों के बीच की दूरी कितनी होगी?


किसी त्रिभुज ABC के शीर्ष A से BC पर डाला गया लम्ब BC को बिंदु D पर इस प्रकार प्रतिच्छेद करता है कि DB = 3CD है (देखिए आकृति) सिद्ध कीजिए कि 2AB2 = 2AC2 + BC2 है।

 


किसी समबाहु त्रिभुज में, सिद्ध कीजिए कि उसकी एक भुजा के वर्ग का तिगुना उसके एक शीर्षलंब के वर्ग के चार गुने के बराबर होता है।


शहर A से शहर B तक जाने के लिए एक मार्ग शहर C से होकर इस प्रकार जाता है कि AC ⊥ CB है, AC = 2x km और CB = 2(x + 7) km है। दोनों शहरों A और B को सीधा जोड़ने के लिए, एक 26 km लंबे राजमार्ग बनाने की एक योजना है। ज्ञात कीजिए कि राजमार्ग बन जाने के बाद, शहर A से शहर B तक जाने में कितनी दूरी कम चलनी पड़ेगी। 


आकृति में, रेखाखंड DF त्रिभुज ABC की भुजा AC को बिंदु E पर इस प्रकार प्रतिच्छेद करता है कि E, भुजा AC का मध्य-बिंदु है और ∠AEF = ∠AFE है। सिद्ध कीजिए कि `(BD)/(CD) = (BF)/(CE)` है।


सिद्ध कीजिए कि एक समकोण त्रिभुज के कर्ण पर खींचे गए अर्धवृत्त का क्षेत्रफल अन्य दो भुजाओं पर खींचे गए अर्धवृत्तों के क्षेत्रफलों के योग के बराबर होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×