Advertisements
Advertisements
प्रश्न
आकृतीत समलंब चौकोन PQRS मध्ये, बाजू PQ || बाजू SR, AR = 5AP, AS = 5AQ तर सिद्ध करा, SR = 5PQ.
उत्तर
बाजू PQ || बाजू SR व रेख SQ ही त्यांची छेदिका आहे. [पक्ष]
∴ ∠QSR ≅ ∠SQP .....[व्युत्क्रम कोन]
∴ ∠ASR ≅ ∠AQP .....(i) [Q-A-S]
ΔASR व ΔAQP मध्ये,
∠ASR ≅ ∠AQP .......[(i) वरून]
∠SAR ≅ ∠QAP .......[विरुद्ध कोन]
∴ ΔASR ∼ ΔAQP .......[समरूपतेची कोको कसोटी]
∴ `"AS"/"AQ" = "SR"/"PQ"` .............(ii) [समरूप त्रिकोणांच्या संगत बाजू]
परंतु, AS = 5AQ ........[पक्ष]
∴ `"AS"/"AQ" = 5/1` ..........(iii)
∴ `"SR"/"PQ" = 5/1` .......[(ii) व (iii) वरून]
∴ SR = 5PQ
APPEARS IN
संबंधित प्रश्न
Δ ABC मध्ये AP ⊥ BC, BQ ⊥ AC B-P-C, A-Q-C तर, Δ CPA ∼ Δ CQB दाखवा. जर AP = 7, BQ = 8, BC = 12 तर AC काढा.
`square"ABCD"` हा समांतरभुज चौकोन आहे. बाजू BC वर E हा एक बिंदू आहे, रेषा DE ही किरण AB ला T बिंदूत छेदते. तर DE × BE = CE × TE दाखवा.
आकृती मध्ये रेख PQ || रेख DE, A (Δ PQF) = 20 एकक, जर PF = 2 DP आहे, तर A(`square"DPQE"`) काढण्यासाठी खालील कृती पूर्ण करा.
A(Δ PQF) = 20 एकक, PF = 2 DP, DP = x मानू. ∴ PF = 2x
DF = DP + `square` = `square` + `square` = 3x
Δ FDE व Δ FPQ मध्ये
∠ FDE ≅ ∠`square` (संगत कोन)
∠ FED ≅ ∠`square` (संगत कोन)
∴ Δ FDE ∼ Δ FPQ .............(कोको कसोटी)
∴ `("A"(Δ"FDE"))/("A"(Δ"FPQ")) = square/square = ((3"x")^2)/((2"x")^2) = 9/4`
A(Δ FDE) = `9/4` × A(Δ FPQ ) = `9/4 xx square = square`
A(`square` DPQE) = A(Δ FDE) - A(Δ FPQ)
= `square - square`
= `square`
जर ΔABC व ΔPQR मध्ये एका एकास एक संगतीत `"AB"/"QR" = "BC"/"PR" = "CA"/"PQ"` तर खालीलपैकी सत्य विधान कोणते?
`square`ABCD मध्ये रेख AD || रेख BC. कर्ण AC आणि कर्ण BD परस्परांना बिंदू P मध्ये छेदतात. तर दाखवा की `"AP"/"PD" = "PC"/"BP"`
∆DEF व ∆XYZ मध्ये `"DE"/"XY" = "FE"/"YZ"` आणि ∠E ≅ ∠Y, तर ∆DEF व ∆∆XYZ हे कोणत्या कसोटीनुसार समरूप होतील?
आकृतीचे निरीक्षण करून त्रिकोण समरूप आहेत का ते ठरवा. असल्यास समरूपता कसोटी लिहा. ∠P = 35°, ∠X = 35° व ∠Q = 60°, ∠Y = 60°
आकृतीमध्ये रेख AC व रेख BD परस्परांना P बिंदूत छेदतात आणि `"AP"/"PC" = "BP"/"PD"`, तर सिद्ध करा ∆ABP ~ ∆CDP.
वरील आकृतीत रेख AC आणि रेख BD परस्परांना P बिंदूत छेदतात. जर `"AP"/"CP" = "BP"/"DP"` तर ΔABP ∼ ΔCDP दाखवण्यासाठी खालील कृती पूर्ण करा.
कृती: ΔABP व ΔCDP मध्ये
`"AP"/"CP" = "BP"/"DP" ....square`
∠APB ≅ `square` ...... विरुद्ध कोन
∴ `square` ∼ ΔCDP ....... समरूपतेची `square` कसोटी.
समलंब चौकोन ABCD मध्ये बाजू AB || बाजू CD चौकोनाचे कर्ण हे एकमेकांना बिंदू P मध्ये छेदतात.
त्यावरून खालील प्रश्नांची उत्तरे लिहा:
- वरील दिलेल्या माहितीवरून आकृती काढा.
- व्युत्क्रम कोन व विरुद्ध कोनांची प्रत्येकी एक जोडी लिहा.
- समरूप त्रिकोणांची नावे समरूपतेच्या कसोटीसह लिहा.