हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (मराठी माध्यम) १० वीं कक्षा

आकृतीत समलंब चौकोन PQRS मध्ये, बाजू PQ || बाजू SR, AR = 5AP, AS = 5AQ तर सिद्ध करा, SR = 5PQ - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

आकृतीत समलंब चौकोन PQRS मध्ये, बाजू PQ || बाजू SR, AR = 5AP, AS = 5AQ तर सिद्ध करा, SR = 5PQ.

योग

उत्तर

बाजू PQ || बाजू SR व रेख SQ ही त्यांची छेदिका आहे. [पक्ष]

∴ ∠QSR ≅ ∠SQP  .....[व्युत्क्रम कोन]

∴ ∠ASR ≅ ∠AQP .....(i) [Q-A-S]

ΔASR व ΔAQP मध्ये,

∠ASR ≅ ∠AQP .......[(i) वरून]

∠SAR ≅ ∠QAP .......[विरुद्ध कोन]

∴ ΔASR ∼ ΔAQP .......[समरूपतेची कोको कसोटी]

∴ `"AS"/"AQ" = "SR"/"PQ"` .............(ii) [समरूप त्रिकोणांच्या संगत बाजू]

परंतु, AS = 5AQ ........[पक्ष]

∴ `"AS"/"AQ" = 5/1`   ..........(iii)

∴ `"SR"/"PQ" = 5/1` .......[(ii) व (iii) वरून]

∴ SR = 5PQ

shaalaa.com
त्रिकोणांच्या समरूपतेच्या कसोट्या
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: समरूपता - सरावसंच 1.3 [पृष्ठ २२]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Marathi] 10 Standard SSC Maharashtra State Board
अध्याय 1 समरूपता
सरावसंच 1.3 | Q 5. | पृष्ठ २२

संबंधित प्रश्न

Δ ABC मध्ये AP ⊥ BC, BQ ⊥ AC B-P-C, A-Q-C तर, Δ CPA ∼ Δ CQB दाखवा. जर AP = 7, BQ = 8, BC = 12 तर AC काढा.


`square"ABCD"` हा समांतरभुज चौकोन आहे. बाजू BC वर E हा एक बिंदू आहे, रेषा DE ही किरण AB ला T बिंदूत छेदते. तर DE × BE = CE × TE दाखवा.

 


आकृती मध्ये रेख PQ || रेख DE, A (Δ PQF) = 20 एकक, जर PF = 2 DP आहे, तर A(`square"DPQE"`) काढण्यासाठी खालील कृती पूर्ण करा.

A(Δ PQF) = 20 एकक, PF = 2 DP, DP = x मानू. ∴ PF = 2x

DF = DP + `square` = `square` + `square` = 3x

Δ FDE व Δ FPQ मध्ये

∠ FDE ≅ ∠`square` (संगत कोन)

∠ FED ≅ ∠`square` (संगत कोन)

∴ Δ FDE ∼ Δ FPQ .............(कोको कसोटी)

∴ `("A"(Δ"FDE"))/("A"(Δ"FPQ")) = square/square = ((3"x")^2)/((2"x")^2) = 9/4`

A(Δ FDE) = `9/4` × A(Δ FPQ ) = `9/4 xx square = square`

A(`square` DPQE) = A(Δ FDE) - A(Δ FPQ)

= `square - square`

= `square`


जर ΔABC व ΔPQR मध्ये एका एकास एक संगतीत `"AB"/"QR" = "BC"/"PR" = "CA"/"PQ"` तर खालीलपैकी सत्य विधान कोणते?

 


`square`ABCD मध्ये रेख AD || रेख BC. कर्ण AC आणि कर्ण BD परस्परांना बिंदू P मध्ये छेदतात. तर दाखवा की `"AP"/"PD" = "PC"/"BP"`

 


∆DEF व ∆XYZ मध्ये `"DE"/"XY" = "FE"/"YZ"` आणि ∠E ≅ ∠Y, तर ∆DEF व ∆∆XYZ हे कोणत्या कसोटीनुसार समरूप होतील?


आकृतीचे निरीक्षण करून त्रिकोण समरूप आहेत का ते ठरवा. असल्यास समरूपता कसोटी लिहा. ∠P = 35°, ∠X = 35° व ∠Q = 60°, ∠Y = 60° 

 


आकृतीमध्ये रेख AC व रेख BD परस्परांना P बिंदूत छेदतात आणि `"AP"/"PC" = "BP"/"PD"`, तर सिद्ध करा ∆ABP ~ ∆CDP.

 


वरील आकृतीत रेख AC आणि रेख BD परस्परांना P बिंदूत छेदतात. जर `"AP"/"CP" = "BP"/"DP"` तर ΔABP ∼ ΔCDP दाखवण्यासाठी खालील कृती पूर्ण करा.

कृती: ΔABP व ΔCDP मध्ये

`"AP"/"CP" = "BP"/"DP"  ....square`

∠APB ≅ `square` ...... विरुद्ध कोन

∴ `square` ∼ ΔCDP  ....... समरूपतेची `square` कसोटी.


समलंब चौकोन ABCD मध्ये बाजू AB || बाजू CD चौकोनाचे कर्ण हे एकमेकांना बिंदू P मध्ये छेदतात.

त्यावरून खालील प्रश्‍नांची उत्तरे लिहा:

  1. वरील दिलेल्या माहितीवरून आकृती काढा.
  2. व्युत्क्रम कोन व विरुद्ध कोनांची प्रत्येकी एक जोडी लिहा.
  3. समरूप त्रिकोणांची नावे समरूपतेच्या कसोटीसह लिहा.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×