Advertisements
Advertisements
प्रश्न
ΔABC मध्ये, AB = `6sqrt3` सेमी, AC = 12 सेमी आणि BC = 6 सेमी तर ∠A चे माप किती?
विकल्प
30°
60°
90°
45°
उत्तर
आपल्याला माहीत आहे, की `6 = 1/2(12)` आणि `6sqrt3 = sqrt(3)/2(12)`
∴ BC = `1/2`AC आणि AB = `sqrt(3)/2`AC
∴ ∠A = 30° .....[30° - 60° - 90° त्रिकोणाच्या प्रमेयाचा व्यत्यास]
ΔABC मध्ये, AB = `6sqrt3` सेमी, AC = 12 सेमी आणि BC = 6 सेमी तर ∠A चे माप 30° असेल.
APPEARS IN
संबंधित प्रश्न
आकृती मधील ΔPSR मध्ये दिलेल्या माहितीवरून RP आणि PS काढा.
ΔRST मध्ये, ∠S = 90°, ∠T = 30°, RT = 12 सेमी तर RS व ST काढा.
आकृती मध्ये ΔPQR हा समभुज त्रिकोण असून बिंदू S हा रेख QR वर अशा प्रकारे आहे की, QS = `1/3` QR तर सिद्ध करा; 9PS2 = 7PQ2
पुढील प्रत्येक उपप्रश्नासाठी 4 पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक उत्तराचा योग्य पर्याय निवडून त्याचे वर्णाक्षर लिहा.
∆ABC मध्ये, AB = `6sqrt3` सेमी, AC = 12 सेमी आणि BC = 6 सेमी, तर ∠A चे माप किती?
सोबतच्या आकृतीत, ∆ABC मध्ये, AB = BC, AC = `2sqrt2`, ∠ABC = 90°. तर AB ची लांबी किती?
4 सेमी बाजू असलेल्या समभुज त्रिकोणाची उंची किती?
बाजूच्या आकृतीवरून जर AQ = 8 सेमी, तर AB ची लांबी काढा.
सोबतच्या आकृतीवरून, जर AC = 12 सेमी, तर AB ची लांबी काढण्यासाठी खालील कृती पूर्ण करा.
कृती: सोबतच्या आकृतीत, ∆ABC मध्ये, ∠ABC = 90°, ∠ACB = 30° यावरून,
∠BAC = `square`
म्हणजेच, ∆ABC हा 30° – 60° – 90° त्रिकोण आहे.
∆ABC मध्ये 30° – 60° – 90° त्रिकोणाच्या प्रमेयानुसार,
AB = `1/2"AC"` व `square` = `sqrt3/2"AC"`.
∴ `square` = `1/2 xx 12` व BC = `sqrt3/2 xx 12`
∴ `square` = 6 व BC = `6sqrt3.`
सोबतच्या आकृतीत, ∆ABC मध्ये, ∠ABC = 90°, ∠CAB = 30° AC = 14, तर AB व BC काढण्यासाठी खालील कृती पूर्ण करा.
कृती: ∆ABC मध्ये, ∠ABC = 90°, ∠CAB = 30° यावरून, ∠BCA = `square`
30° – 60° – 90° त्रिकोणाच्या प्रमेयानुसार,
`square = 1/2 "AC" व square = sqrt3/2 "AC"`.
∴ BC = `1/2 xx square` व AB = `sqrt3/2 xx 14`
BC = 7 व AB = `7sqrt3`.
सोबतच्या आकृतीत, LK = `6sqrt2` तर MK, ML, MN काढा.