हिंदी

ABCD एक समांतर चतुर्भज है तथा AP और CQ शीर्षों A और C से विकर्ण BD पर क्रमशः लम्ब हैं (देखिए आकृति में)। दर्शाइए कि i. ΔAPB ≅ ΔCQD ii. AP = CQ - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

ABCD एक समांतर चतुर्भज है तथा AP और CQ शीर्षों A और C से विकर्ण BD पर क्रमशः लम्ब हैं (देखिए आकृति में)। दर्शाइए कि

  1. ΔAPB ≅ ΔCQD
  2. AP = CQ

योग

उत्तर

i. ΔAPB और ΔCQD में,

∠APB = ∠CQD       ...(प्रत्येक 90°)

AB = CD                ...(समांतर चतुर्भुज ABCD की सम्मुख भुजाएँ)

∠ABP = ∠CDQ      ...(AB || CD के लिए एकांतर अंत: कोण)

∴ ΔAPB ≅ ΔCQD       ...(AAS सर्वांगसमता से)

ii. उपरोक्त परिणाम का उपयोग करके

ΔAPB ≅ ΔCQD, हम प्राप्त करते हैं

AP = CQ          ...(CPCT से)

shaalaa.com
चतुर्भुज के प्रकार - समांतर चतुर्भुज के गुणधर्म
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: चतुर्भुज - प्रश्नावली 8.1 [पृष्ठ १७६]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 9
अध्याय 8 चतुर्भुज
प्रश्नावली 8.1 | Q 10. | पृष्ठ १७६

संबंधित प्रश्न

दर्शाइए कि एक वर्ग के विकर्ण बराबर होते हैं और परस्पर समकोण पर समद्विभाजित करते हैं।


किसी समांतर चतुर्भुज के दो आसन्न कोणों का अनुपात 3 : 2 है। समांतर चतुर्भुज के सभी कोणों की माप ज्ञात कीजिए।


निम्नलिखित के लिए कारण दीजिए:

वर्ग, आयत, समांतर चतुर्भुज और समचतुर्भुज में से प्रत्येक एक चतुर्भुज भी है।


एक समांतर चतुर्भुज ABCD के विकर्ण AC और BD परस्पर बिंदु O पर प्रतिच्छेद करते हैं। यदि OA = 3 cm और OD = 2 cm है, तो AC और BD की लंबाई ज्ञात कीजिए।


∆ABC में, AB = 5 cm, BC = 8 cm और CA = 7 cm हैं। यदि D और E क्रमश : AB और BC के मध्य-बिंदु हैं, तो DE की लंबाई निर्धारित कीजिए।


ABCD एक समलंब है जिसमें AB || DC और ∠A = ∠B = 45° है। इस समलंब के कोण C और D ज्ञात कीजिए।


किसी समांतर चतुर्भुज के एक अधिक कोण वाले शीर्ष से खींचे गये दो शीर्षलंबों के बीच का कोण 30है। उस अधिक कोण की माप है –


एक समांतर चतुर्भुज की आसन्न भुजाएँ 5 cm और 9 cm है। उसका परिमाप ______ है।


यदि एक चतुर्भुज के सम्मुख कोण बराबर हों, तो वह अवश्य ही समांतर चतुर्भुज होगा।


ABCD एक समांतर चतुर्भुज है। x, y और z के मान ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×