हिंदी

AD is an altitude of an isosceles triangles ABC in which AB = AC. Show that AD bisects BC AD bisects ∠A - Mathematics

Advertisements
Advertisements

प्रश्न

AD is an altitude of an isosceles triangles ABC in which AB = AC. Show that

  1. AD bisects BC
  2. AD bisects ∠A
योग

उत्तर

(i) In ∆ABD and ∆ACD,

AB = AC       ...[Given]

∠ADB = ∠ADC     ...[Each 90°]

AD = AD          ...[Common]

∴ ∆ABD ≅ ∆ACD    ...[By RHS Congruence Rule]

So, BD = DC        ...[Corresponding parts of congruent triangles]

⇒ D is the mid-point of BC

or AD bisects BC.

(ii) Since, ∆ABD ≅ ∆ACD,

∠BAD = ∠CAD      ...[Corresponding parts of congruent triangles]

⇒ Thus, AD bisects ∠A.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Triangles - Exercise 7.3 [पृष्ठ १२८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
अध्याय 7 Triangles
Exercise 7.3 | Q 2 | पृष्ठ १२८

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×