हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

An Electric Bulb is Designed to Operate at 12 Volts Dc. If this Bulb is Connected to an Ac Source and Gives Normal Brightness, What Would Be the Peak - Physics

Advertisements
Advertisements

प्रश्न

An electric bulb is designed to operate at 12 volts DC. If this bulb is connected to an AC source and gives normal brightness, what would be the peak voltage of the source?

योग

उत्तर

Voltage across the electric bulb, E = 12 volts
Let E0 be the peak value of voltage.
We know that heat produced by passing an alternating current ( i ) through a resistor is equal to heat produced by passing a constant current `(i_{rms})`through the same resistor. If R is the resistance of the electric bulb and T is the temperature, then
`i^2RT = i^2_rms^{RT}`

`⇒ E^2/R^2 = E_{rms}^2/R^2`

`⇒ E^2 = E_0^2/2 (therefore E^2_rms = E_0^2)`

`⇒ E_0^2 = 2E^2`

`⇒ E_0^2  = 2xx(12)^2 = 2 xx 144`

`⇒ E_0= sqrt2xx144`

 =16.97 = 17 ⇒ V


Thus , peak value of voltage is 17 V.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Alternating Current - Exercises [पृष्ठ ३३०]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 17 Alternating Current
Exercises | Q 4 | पृष्ठ ३३०

संबंधित प्रश्न

A device X is connected across an ac source of voltage V = V0 sin ωt. The current through X is given as 

`I = I_0 sin (omega t + pi/2 )`

1) Identify the device X and write the expression for its reactance.

2) Draw graphs showing the variation of voltage and current with time over one cycle of ac, for X.

3) How does the reactance of the device X vary with the frequency of the ac? Show this variation graphically.

4) Draw the phasor diagram for the device X.


The given graph shows the variation of photo-electric current (I) versus applied voltage (V) for two difference photosensitive materials and for two different intensities of the incident radiations. Identify the pairs of curves that correspond to different materials but same intensity of incident radiation.


In a series LCR circuit connected to an ac source of variable frequency and voltage ν = vm sin ωt, draw a plot showing the variation of current (I) with angular frequency (ω) for two different values of resistance R1 and R2 (R1 > R2). Write the condition under which the phenomenon of resonance occurs. For which value of the resistance out of the two curves, a sharper resonance is produced? Define Q-factor of the circuit and give its significance.


The voltage and current in a series AC circuit are given by V = V0cos ωt and i = i0 sin ωt. What is the power dissipated in the circuit?


Two alternating currents are given by `i_1 = i_0 sin wt and i_2 = i_0 sin (wt + pi/3)` Will the rms values of the currents be equal or different?


Can the peak voltage across the inductor be greater than the peak voltage of the source in an LCR circuit?


An alternating current of peak value 14 A is used to heat a metal wire. To produce the same heating effect, a constant current i can be used, where i is


A constant current of 2.8 A exists in a resistor. The rms current is


The peak power consumed by a resistive coil, when connected to an AC source, is 80 W. Find the energy consumed by the coil in 100 seconds, which is many times larger than the time period of the source.


A capacitor of capacitance 10 μF is connected to an oscillator with output voltage ε = (10 V) sin ωt. Find the peak currents in the circuit for ω = 10 s−1, 100 s−1, 500 s−1 and 1000 s−1.


A coil of inductance 5.0 mH and negligible resistance is connected to the oscillator of the previous problem. Find the peak currents in the circuit for ω = 100 s−1, 500 s−1, 1000 s−1.


Answer the following question.
A small town with a demand of 1200 kW of electric power at 220 V is situated 20 km away from an electric plant generating power at 440 V. The resistance of the two wirelines carrying power is 0.5 Ω per km. The town gets the power from the line through a 4000-220 V step-down transformer at a sub-station in the town. Estimate the line power loss in the form of heat. 


A circuit containing a 80 mH inductor and a 60 µF capacitor in series is connected to a 230 V, 50 Hz supply. The resistance of the circuit is negligible.

(a) Obtain the current amplitude and rms values.

(b) Obtain the rms values of potential drops across each element.

(c) What is the average power transferred to the inductor?

(d) What is the average power transferred to the capacitor?

(e) What is the total average power absorbed by the circuit?
[‘Average’ implies ‘averaged over one cycle’.]


Do the same with the replacement of the earlier transformer by a 40,000-220 V step-down transformer (Neglect, as before, leakage losses though this may not be a good assumption any longer because of the very high voltage transmission involved). Hence, explain why high voltage transmission is preferred?


The peak value of the a.c. current flowing throw a resistor is given by ______.

If `|vec"A" xx vec"B"| = sqrt3 vec"A" . vec"B"` then the value of  is `|vec"A" xx vec"B"|` is


The period of oscillation of a simple pendulum is T = `2π sqrt"L"/"g"`. The measured value of L is 20.0 cm known to have 1 mm accuracy and the time for 100 oscillations of the pendulum is found to be 90 s using a wristwatch of ls resolution. The accuracy in the determination of g is:


When a voltage measuring device is connected to AC mains, the meter shows the steady input voltage of 220V. This means ______.


RMS value of an alternating current flowing in a circuit is 5A. Calculate its peak value.


In the Figure below, the current-voltage graphs for a conductor are given at two different temperatures, T1 and T2.

 

  1. At which temperature T1 or T2 is the resistance higher?
  2. Which temperature (T1 or T2) is higher?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×