Advertisements
Advertisements
प्रश्न
An inductor-coil carries a steady-state current of 2.0 A when connected across an ideal battery of emf 4.0 V. If its inductance is 1.0 H, find the time constant of the circuit.
उत्तर
We know that time constant is the ratio of the self-inductance (L) of the coil to the resistance (R) of the circuit.
Given:-
Current in the circuit, i = 2 A
Emf of the battery, E = 4 V
Self-inductance of the coil, L = 1 H
Now,
Resistance of the coil:-
\[R = \frac{E}{i} = \frac{4}{2} = 2 \Omega\]
Time constant:-
\[\tau = \frac{L}{R} = \frac{1}{2} = 0 . 5 s\]
APPEARS IN
संबंधित प्रश्न
Current in a circuit falls from 5.0 A to 0.0 A in 0.1 s. If an average emf of 200 V induced, give an estimate of the self-inductance of the circuit.
Write the SI unit and dimention of of co-efficient of self induction
A toroidal solenoid with air core has an average radius of 15 cm, area of cross-section 12 cm2 and has 1200 turns. Calculate the self-inductance of the toroid. Assume the field to be uniform across the cross-section of the toroid.
Derive an expression for self inductance of a long solenoid of length l, cross-sectional area A having N number of turns.
An average emf of 20 V is induced in an inductor when the current in it is changed from 2.5 A in one direction to the same value in the opposite direction in 0.1 s. Find the self-inductance of the inductor.
A magnetic flux of 8 × 10−4 weber is linked with each turn of a 200-turn coil when there is an electric current of 4 A in it. Calculate the self-inductance of the coil.
Choose the correct option
A current through a coil of self-inductance 10 mH increases from 0 to 1 A in 0.1 s. What is the induced emf in the coil?
Two pure inductors each of self-inductance L are connected in series, the net inductance is ______
A coil of self-inductance 3 H carries a steady current of 2 A. What is the energy stored in the magnetic field of the coil?
Obtain an expression for the self-inductance of a solenoid.
When a coil is connected to a D.C. source of e.m.f. 12 volt, then a current of 4 ampere flows in it. If the same coil is connected to a 12 volt, 25 cycle/s A.C sources, then the current flowing in it is 2.4 A. The self-inductance of the coil will be ______
When the number of turns in a coil is tripled without any change in the length of the coil, its self-inductance ______
The magnetic potential energy stored in a certain inductor is 15 mJ, when the current in the inductor is 40 mA. This inductor is of inductance ____________.
Two coils of wire A and B are placed mutually perpendicular as shown. When current is changed in any one coil.
An air-cored solenoid with length 30 cm, area of cross-section 25 cm2 and number of turns 800, carries a current of 2.5 A. The current is suddenly switched off in a brief time of 10-3s. Ignoring the variation in magnetic field near the ends of the solenoid, the average back emf induced across the ends of the open switch in the circuit would be ______.
In a fluorescent lamp choke (a small transformer) 100 V of reverse voltage is produced when the choke current changes uniformly from 0.25 A to 0 in a duration of 0.025 ms. The self-inductance of the choke (in mH) is estimated to be ______.
Calculate the self-inductance of a coil using the following data obtained when an AC source of frequency `(200/pi)` Hz and a DC source are applied across the coil.
AC Source | ||
S.No. | V (volts) | I (A) |
1 | 3.0 | 0.5 |
2 | 6.0 | 1.0 |
3 | 9.0 | 1.5 |
DC Source | ||
S.No. | V (volts) | I (A) |
1 | 4.0 | 1.0 |
2 | 6.0 | 1.5 |
3 | 8.0 | 2.0 |
An air-cored solenoid, 40 cm long and of cross-sectional area 5 cm2, is tightly wound with 400 turns of copper wire and carries a steady current of 10 A. (a) Calculate the self-inductance of the solenoid. (b) Find the emf induced if the current in the solenoid decreases to zero in 0.2 s.
State the factors on which the magnetic coupling coefficient of two coils depends.