Advertisements
Advertisements
प्रश्न
Write the SI unit and dimention of of co-efficient of self induction
उत्तर
SI Unit of co-efficient of self induction is henry (H) in SI system or volt A−1 s.
Dim ensions of self induction are [L2M1T−2A−2]
APPEARS IN
संबंधित प्रश्न
Explain the phenomenon of self induction
In a given coil of self-inductance of 5 mH, current changes from 4 A to 1 A in 30 ms. Calculate the emf induced in the coil.
The currents flowing in the two coils of self-inductance L1 = 16 mH and L2 = 12 mH are increasing at the same rate. If the power supplied to the two coil is equal, find the ratio of the currents ?
The currents flowing in the two coils of self-inductance L1 = 16 mH and L2 = 12 mH are increasing at the same rate. If the power supplied to the two coil is equal, find the ratio of the energies stored in the two coils at a given instant ?
Derive the expression for the self-inductance of a long solenoid of cross sectional area A and length l, having n turns per unit length.
A plot of magnetic flux (Φ) versus current (I) is shown in the figure for two inductors A and Β. Which of the two has larger value of self inductance?
Define self inductance. Write its S.I. units.
A constant current i is maintained in a solenoid. Which of the following quantities will increase if an iron rod is inserted in the solenoid along its axis?
(a) magnetic field at the centre
(b) magnetic flux linked with the solenoid
(c) self-inductance of the solenoid
(d) rate of Joule heating.
Two solenoids have identical geometrical construction but one is made of thick wire and the other of thin wire. Which of the following quantities are different for the two solenoids?
(a) self-inductance
(b) rate of Joule heating if the same current goes through them
(c) magnetic field energy if the same current goes through them
(d) time constant if one solenoid is connected to one battery and the other is connected to another battery.
A magnetic flux of 8 × 10−4 weber is linked with each turn of a 200-turn coil when there is an electric current of 4 A in it. Calculate the self-inductance of the coil.
An inductor-coil carries a steady-state current of 2.0 A when connected across an ideal battery of emf 4.0 V. If its inductance is 1.0 H, find the time constant of the circuit.
A coil having inductance 2.0 H and resistance 20 Ω is connected to a battery of emf 4.0 V. Find (a) the current at the instant 0.20 s after the connection is made and (b) the magnetic field energy at this instant.
An inductor of inductance 5.0 H, having a negligible resistance, is connected in series with a 100 Ω resistor and a battery of emf 2.0 V. Find the potential difference across the resistor 20 ms after the circuit is switched on.
Consider a small cube of volume 1 mm3 at the centre of a circular loop of radius 10 cm carrying a current of 4 A. Find the magnetic energy stored inside the cube.
A long wire carries a current of 4.00 A. Find the energy stored in the magnetic field inside a volume of 1.00 mm3 at a distance of 10.0 cm from the wire.
Answer the following question.
When an inductor is connected to a 200 V dc voltage, a current at 1A flows through it. When the same inductor is connected to a 200 V, 50 Hz ac source, only 0.5 A current flows. Explain, why? Also, calculate the self-inductance of the inductor.
Choose the correct option
A current through a coil of self-inductance 10 mH increases from 0 to 1 A in 0.1 s. What is the induced emf in the coil?
Explain why the inductance of two coils connected in parallel is less than the inductance of either coil.
Two pure inductors each of self-inductance L are connected in series, the net inductance is ______
A coil of self-inductance 3 H carries a steady current of 2 A. What is the energy stored in the magnetic field of the coil?
Define self-inductance.
Two rods of same material and volume having circular cross-section are subjected to tension T. Within the elastic limit, same force is applied to both the rods. Diameter of the first rod is half of the second rod, then the extensions of first rod to second rod will be in the ratio
When the number of turns in a coil is tripled without any change in the length of the coil, its self-inductance ______
Consider a solenoid carrying supplied by a source with a constant emf containing iron core inside it. When the core is pulled out of the solenoid, the change in current will ______.
A toroidal solenoid with air core has an average radius 'R', number of turns 'N' and area of cross-section 'A'. The self-inductance of the solenoid is (Neglect the field variation cross-section of the toroid)
Two coils of wire A and B are placed mutually perpendicular as shown. When current is changed in any one coil.
A graph of magnetic flux `phi` versus current (I) is shown for four inductors A, B, C, D. Smaller value of self inductance is for inductor ____________.
A resistance of 100 `Omega`, inductor of self-inductance`(4/pi^2)` H and a capacitor of unknown capacitance are connected in series to an a.c. source of 200 V and 50 Hz. When the current and voltage are in phase, the capacitance and power dissipated is respectively ____________.
A graph of magnetic flux `(phi)` versus current (I) is shown for four inductors A, B, C and D. Larger value of self-inductance is for inductor ____________.
The frequency of γ-rays, X-rays and ultraviolet rays are a, b and c respectively. Then, ______.
Two coils of self inductances 2 mH and 8 mH are placed so close together that the effective flux in one coil is completely linked with the other. The mutual inductance between these coils is ______.
The coefficient of self inductance of a solenoid is 0.18 mH. If a core of soft iron of relative permeability 900 is inserted, then the coefficient of self inductance will become nearly ______.
Two solenoids of same cross-sectional area have their lengths and number of turns in ratio of 1 : 2 both. The ratio of self-inductance of two solenoids is ______.
A coil is wound on a frame of rectangular cross-section. If all the linear dimensions of the frame are increased by a factor 2 and the number of turns per unit length of the coil remains the same, self-inductance of the coil increases by a factor of ______.
The self-inductance associated with a coil is independent of ______.
If both the number of turns and core length of an inductor is doubled keeping other factors constant, then its self-inductance will be ______.
Energy needed to establish an alternating current I in a coil of self-inductance L is
What is the unit of self-inductance of a coil?
The self-inductance depends upon ______.
The self inductance L of a solenoid of length l and area of cross-section A, with a fixed number of turns N increases as ______.
Consider an infinitely long wire carrying a current I(t), with `(dI)/(dt) = λ` = constant. Find the current produced in the rectangular loop of wire ABCD if its resistance is R (Figure).
In a fluorescent lamp choke (a small transformer) 100 V of reverse voltage is produced when the choke current changes uniformly from 0.25 A to 0 in a duration of 0.025 ms. The self-inductance of the choke (in mH) is estimated to be ______.
The inductance of a solenoid L having diameter d. Let n be the number of turns per unit length. The inductance per unit length near the middle of a solenoid is ______.
(Assume that, l = current passes through the turns, µ0 = Permeability of vacuum)
A current of 1A flows through a coil when it is connected across a DC battery of 100V. If the DC battery is replaced by an AC source of 100 V and angular frequency of 100 rad s-1, the current reduces to 0.5 A. Find
- the impedance of the circuit.
- self-inductance of coil.
- Phase difference between the voltage and the current.
Obtain an expression for the self inductance of a solenoid.
What is meant by magnetic coupling coefficient?
The current in a coil changes from 50A to 10A in 0.1 second. The self inductance of the coil is 20H. The induced e.m.f. in the coil is ______.