Advertisements
Advertisements
प्रश्न
Explain why the inductance of two coils connected in parallel is less than the inductance of either coil.
उत्तर १
- For a parallel combination of two coils, the current through each parallel inductor is a fraction of the total current and the voltage across each parallel inductor is the same.
- As a result, a change in total current will result in less voltage dropped across the parallel array than for any one of the individual inductors.
- There will be less voltage drop across parallel inductors for a given rate of change in current than for any of the individual inductors.
- Less voltage for the same rate of change in current results in less inductance.
- Thus, the total inductance of two coils is less than the inductance of either coil.
उत्तर २
When two inductors with inductances L1 and L2 are connected in parallel, the equivalent inductance is given by
`1/"L"_"equivalent" = 1/"L"_1 + 1/"L"_2`
which is less than the individual inductance value L1 and L2.
As a result, the inductance of two parallel coils is smaller than the inductance of either coil.
APPEARS IN
संबंधित प्रश्न
Current in a circuit falls from 5.0 A to 0.0 A in 0.1 s. If an average emf of 200 V induced, give an estimate of the self-inductance of the circuit.
Write the SI unit and dimention of of co-efficient of self induction
Define self-inductance. Write its SI units.
The currents flowing in the two coils of self-inductance L1 = 16 mH and L2 = 12 mH are increasing at the same rate. If the power supplied to the two coil is equal, find the ratio of the currents ?
The currents flowing in the two coils of self-inductance L1 = 16 mH and L2 = 12 mH are increasing at the same rate. If the power supplied to the two coil is equal, find the ratio of the energies stored in the two coils at a given instant ?
Define self-inductance of a coil. Show that magnetic energy required to build up the current I in a coil of self inductance L is given by `1/2 LI^2`
Derive the expression for the self-inductance of a long solenoid of cross sectional area A and length l, having n turns per unit length.
A plot of magnetic flux (Φ) versus current (I) is shown in the figure for two inductors A and Β. Which of the two has larger value of self inductance?
Derive an expression for self inductance of a long solenoid of length l, cross-sectional area A having N number of turns.
Consider the self-inductance per unit length of a solenoid at its centre and that near its ends. Which of the two is greater?
A constant current i is maintained in a solenoid. Which of the following quantities will increase if an iron rod is inserted in the solenoid along its axis?
(a) magnetic field at the centre
(b) magnetic flux linked with the solenoid
(c) self-inductance of the solenoid
(d) rate of Joule heating.
An average emf of 20 V is induced in an inductor when the current in it is changed from 2.5 A in one direction to the same value in the opposite direction in 0.1 s. Find the self-inductance of the inductor.
A magnetic flux of 8 × 10−4 weber is linked with each turn of a 200-turn coil when there is an electric current of 4 A in it. Calculate the self-inductance of the coil.
An inductor of inductance 5.0 H, having a negligible resistance, is connected in series with a 100 Ω resistor and a battery of emf 2.0 V. Find the potential difference across the resistor 20 ms after the circuit is switched on.
Consider a small cube of volume 1 mm3 at the centre of a circular loop of radius 10 cm carrying a current of 4 A. Find the magnetic energy stored inside the cube.
Answer the following question.
When an inductor is connected to a 200 V dc voltage, a current at 1A flows through it. When the same inductor is connected to a 200 V, 50 Hz ac source, only 0.5 A current flows. Explain, why? Also, calculate the self-inductance of the inductor.
Choose the correct option
A current through a coil of self-inductance 10 mH increases from 0 to 1 A in 0.1 s. What is the induced emf in the coil?
Two pure inductors each of self-inductance L are connected in series, the net inductance is ______
When a coil is connected to a D.C. source of e.m.f. 12 volt, then a current of 4 ampere flows in it. If the same coil is connected to a 12 volt, 25 cycle/s A.C sources, then the current flowing in it is 2.4 A. The self-inductance of the coil will be ______
When the number of turns in a coil is tripled without any change in the length of the coil, its self-inductance ______
An e.m.f. of 10 volt is produced by a self inductance when the current changes at a steady rate from 6 A to 4 A in 1 millisecond. The value of self inductance is ____________.
A toroidal solenoid with air core has an average radius 'R', number of turns 'N' and area of cross-section 'A'. The self-inductance of the solenoid is (Neglect the field variation cross-section of the toroid)
A graph of magnetic flux `phi` versus current (I) is shown for four inductors A, B, C, D. Smaller value of self inductance is for inductor ____________.
The frequency of γ-rays, X-rays and ultraviolet rays are a, b and c respectively. Then, ______.
A coil is wound on a frame of rectangular cross-section. If all the linear dimensions of the frame are increased by a factor 2 and the number of turns per unit length of the coil remains the same, self-inductance of the coil increases by a factor of ______.
An air-cored solenoid with length 30 cm, area of cross-section 25 cm2 and number of turns 800, carries a current of 2.5 A. The current is suddenly switched off in a brief time of 10-3s. Ignoring the variation in magnetic field near the ends of the solenoid, the average back emf induced across the ends of the open switch in the circuit would be ______.
If both the number of turns and core length of an inductor is doubled keeping other factors constant, then its self-inductance will be ______.
An inductor may store energy in
What is the unit of self-inductance of a coil?
A coil of wire of a certain radius has 600 turns and a self-inductance is 108 mH. The self-inductance of a second similar coil of 500 turns will be:
An average induced emf of 0.20 V appears in a coil when the current in it is changed from 5A in one direction to 5A in the opposite direction in 0.20 sec. Find the self induction of the coil.
In a fluorescent lamp choke (a small transformer) 100 V of reverse voltage is produced when the choke current changes uniformly from 0.25 A to 0 in a duration of 0.025 ms. The self-inductance of the choke (in mH) is estimated to be ______.
The inductance of a solenoid L having diameter d. Let n be the number of turns per unit length. The inductance per unit length near the middle of a solenoid is ______.
(Assume that, l = current passes through the turns, µ0 = Permeability of vacuum)
Calculate the self-inductance of a coil using the following data obtained when an AC source of frequency `(200/pi)` Hz and a DC source are applied across the coil.
AC Source | ||
S.No. | V (volts) | I (A) |
1 | 3.0 | 0.5 |
2 | 6.0 | 1.0 |
3 | 9.0 | 1.5 |
DC Source | ||
S.No. | V (volts) | I (A) |
1 | 4.0 | 1.0 |
2 | 6.0 | 1.5 |
3 | 8.0 | 2.0 |
A current of 1A flows through a coil when it is connected across a DC battery of 100V. If the DC battery is replaced by an AC source of 100 V and angular frequency of 100 rad s-1, the current reduces to 0.5 A. Find
- the impedance of the circuit.
- self-inductance of coil.
- Phase difference between the voltage and the current.
State the factors on which the magnetic coupling coefficient of two coils depends.
Obtain an expression for the self inductance of a solenoid.
A toroid of a circular cross-section of radius 0.05 m has 2000 windings and a self-inductance of 0.04 H. What is (a) the current through the windings when the energy in its magnetic field is 2 × 10−6 J and (b) the central radius of the toroid?
What is meant by magnetic coupling coefficient?